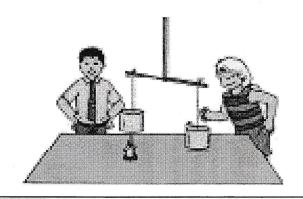
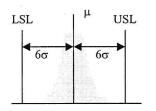


Full Factorial Design Of Experiments

Lean Sigma
Black Belt Training

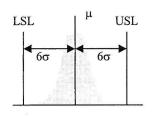




What is a Designed Experiment (DOE)?

A DOE is a carefully planned method of introducing variation into a process such that factors producing significant effects will be identified and quantified in an efficient manner.

In other words we will be able to effectively identify what factors make a difference and quantify the Y=F(x) relationships within a process.



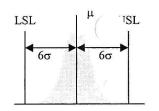
Designing an Experiment

All DOE's have the following in common:

- Factors will be selected that we want to study based on the knowledge gained about the Y=f(x) relationships.
- Factor settings (a high and a low) will be selected for each factor.
- Response variable(s) will be chosen (what we measure).
- Runs (or treatments) will be created with specific factor settings defined (per DOE rules).



Example Full Factorial - Cookie DOE



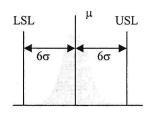
AYTOCE Cookie Company produces packaged cookie dough. Their marketing department is interested in developing cookie instructions that will yield the best taste, texture and appearance of the cookie. They are interested in understanding the effects of two factors, **bake time** and **bake temperature**:

- 1. Bake Time (A).
- 2. Bake Temperature (B).

- What other factors are there?
- How would those factors be discovered?

Full Factorial - Cookie DOE (con't)

The Tech Group


OBJECTIVE:

Improve taste, texture and appearance of cookies and to determine the range for the instructions.

TWO VARIABLES:

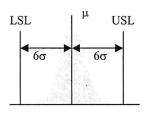
Bake Time (A). Bake Temperature (B).

- What questions should be asked?
- 2. What should the response be?
- 3. Construct a 2² factorial design.
- 4. How should the experiment be run?

DOE design and result:

Α	В	Υ
Bake Time	Bake	Taste
(Min)	Temp	1000
6	375	41
10	375	50
6	450	47
10	450	35

Which factors are important?
How should the important factors be set?

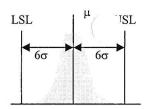

Six Sigma Rules of Analysis:

> Practical

Graphical

> Analytical

- Practical:
- Once the experiment has been run, there are a host of methods to assist in analysis. The first consideration, before applying any statistical analysis techniques, is whether the results are of any practical importance.
 - ✓ Did the response variable change?
 - ✓ Did it change the desired amount?
- ➤ If the response variable did not change enough, it may be that:
 - Factor levels were not set far enough apart.
 - The selected factors do not affect the response variable.
 - 3. The measurement system is not adequate



Practical View

2² Full Factorial Experiment

Α	В	Υ
Bake Time	Bake Temp	Taste
(Min) 6	375	41
10	375	50
6	450	47
10	450	35

- 1. Practically speaking, what observations can be made about the data if:
 - a change of 10 is required?
 - a change of 50 is required?
- 2. What preliminary actions would you recommend right now?

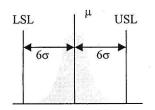
Analytical View

To begin analyzing the importance of each factor, code the levels as (-) or (+) as shown to the right.

Α	В	Υ
Bake Time (Min)	Bake Temp	Taste
6 (-)	375 (-)	41
10 (+)	375 (-)	50
6 (-)	450 (+)	47
10 (+)	450 (+)	35

Create a coded column for the AB interaction. It is the product of the A and B signs.

Example: (-) x (-) = (+)


We have added the interaction column to the table on the right.

We will sort the response (Y) in ascending order and look for patterns of "level" separation. This is called an ANOG.

It appears our interaction is important

Α	В	AB	Υ
Bake Time (Min)	Bake Temp	Interaction	Taste
6 (-)	375 (-)	(+)	41
10 (+)	375 (-)	(-)	50
6 (-)	450 (+)	(-)	47
10 (+)	450 (+)	(+)	35

Α	В	AB	Υ .
Bake Time (Min)	Bake Temp	Interaction	Taste
10 (+)	450 (+)	(+)	35
6 (-)	375 (-)	(+)	41
_6(-)	450 (+)	(-)	47
10 (+)	375 (-)	(-)	50

Analyzing the Main Effects

The importance of a factor is called the "effect". It is determined by subtracting the averages of the high & low levels for a factor.

Effect = (Avg. at "+" level) - (Avg. at "-" level)

Effect of Factor A:

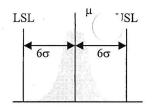
We want $\overline{A}(+) - \overline{A}(-)$:

$$\overline{A}(+) = (50+35)/2 = 42.5$$

$$\overline{A}(-) = (41+47)/2 = 44.0$$

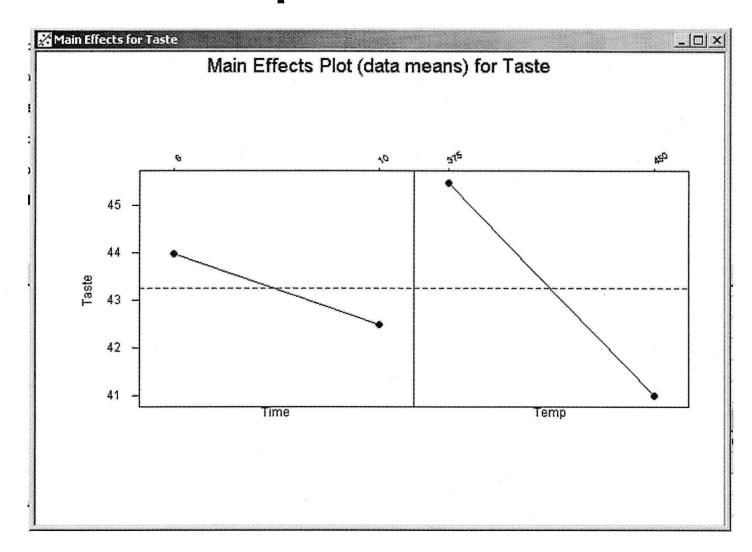
Therefore, the main effect of A = 42.5 - 44 = -1.5

Effect of Factor B:

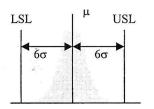

We want $\overline{B}(+) - \overline{B}(-)$:

$$\overline{B}(+) = (47+35)/2 = 41$$

$$\overline{B}(-) = (41+50)/2 = 45.5$$

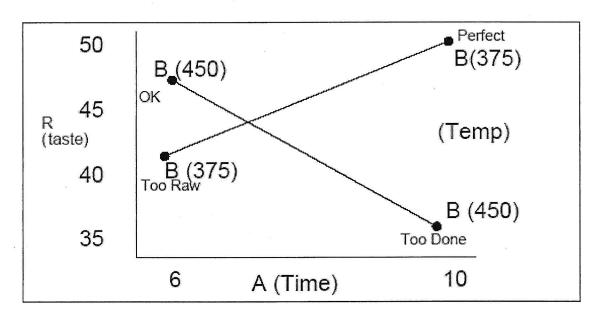

Therefore, the main effect of B = 41.0 - 45.5 = -4.5

Α	В	AB	Υ
Bake Time (Min)	Bake Temp	Interaction	Taste
6 (-)	375 (-)	(+)	41
10 (+)	375 (-)	(-)	50
6 (-)	450 (+)	(-)	47
10 (+)	450 (+)	(+)	35

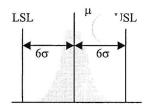


Graphical View

What does this tell us about the effects of time and temperature on taste?



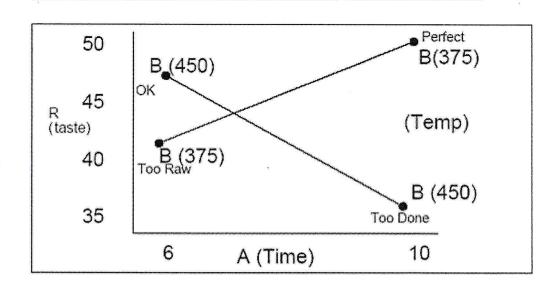
Analyzing the Interactions

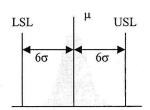

<u>Interaction:</u> 2 factors interact if one factor's effect on the response is dependent upon the level of the other factor.

The
$$\overline{AB}$$
 interaction = $(41+35)/2 - (50+47)/2 = -10.5$

Interaction Plot:

Α	В	AB	Υ
Bake Time (Min)	Bake Temp	Interaction	Taste
6 (-)	375 (-)	(+)	41
10 (+)	375 (-)	(-)	50
6 (-)	450 (+)	(-)	47
10 (+)	450 (+)	(+)	35


Analysis Summary


Now that we have calculated the effect for time, temperature, and the time/temperature interaction we can compare the relative importance of each:

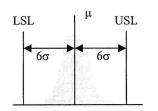
Factor	Effect	In this experiment, the Time x Temperature
		Interaction has the largest effect and is,
Time	1.5	therefore, the most important.
Temperature	4.5	•
Time x Temperature	10.5←	This is consistent with our ANOG result!

Practical Significance:

Controlling Time or Temperature alone will not ensure good tasting cookies. Time and Temperature should be analyzed and set together to ensure the best tasting cookies.

ANalysis Of Good (ANOG)

In this example, we can see that the AB interaction is significant.


Run	Stop Pin	Launch Angle	Tension Pin	In	teractio	ns	Yavg
	Α	В	C	AB	AC	ABC	
3	-1	+1	-1 /	-1	+1	+1	92
2	+1	-1-		=1	-1	+1	91
7	11	+1	+1	\ =1	/ -1	-1	87
8	+1	+1	+1	44	+1	+1	81
6	+1	\ =1	+1	-1	+1	-1	78
5	-1	- 1	+1	+1	\ -1	+1	74
4	+1	+1	-1	+1	-1	71	74
1	-1	-1	-1	+1	+1	-1	63

Sorted by Y_{avg}

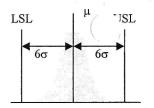
(Example only)

Perform an ANOG on your data:

- 1. Color code all of one sign (yellow minus signs in this case)
- 2. Sort data by Y_{avg} (ascending or descending OK)
- Look for patterns of separation in data. We want the signs to cluster together at opposite ends.

Coded vs. Uncoded Units

The predictive equation you created is based on the assumption that the high settings for each of your factors is "+1" and the low setting for each factor is "-1". So the coefficients of the predictive equation are said to be in "coded units".

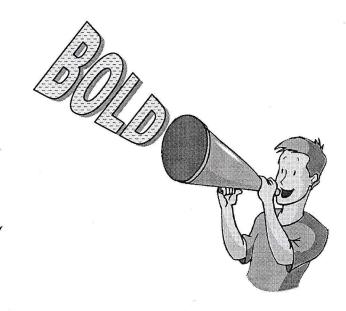

We must convert *coded units* to *uncoded units* if we wish to set our statapult based on the predictive equation.

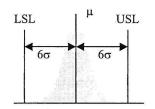
For your convenience, a conversion chart has been provided on the right. Use this chart to complete the exercise on the next page.

Stop Pin (A)			
Coded Uncoded			
Low	-1	3	
mid	0	NA	
High	1	4	

Tension Pin (C)				
7	Coded	Uncoded		
Low	-1	2		
mid	0	3		
High	- 1	4		

Launch Angle (B)			
	Coded	Uncoded	
	-1	155	
	-0.84	157	
Low	-0.68	159	
	-0.52	161	
	-0.36	163	
	-0.2	165	
	-0.12	166	
	0.04	168	
	0.2	170	
	0.36	172	
	0.52	174	
High	0.68	176	
	0.84	178	
DE C	1	180	



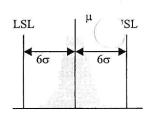


Inference Space

- The area <u>within</u> which you test and draw conclusions based on the results of your experiment.
- Level settings start BOLD and reduce space between levels as you approach optimum conditions.

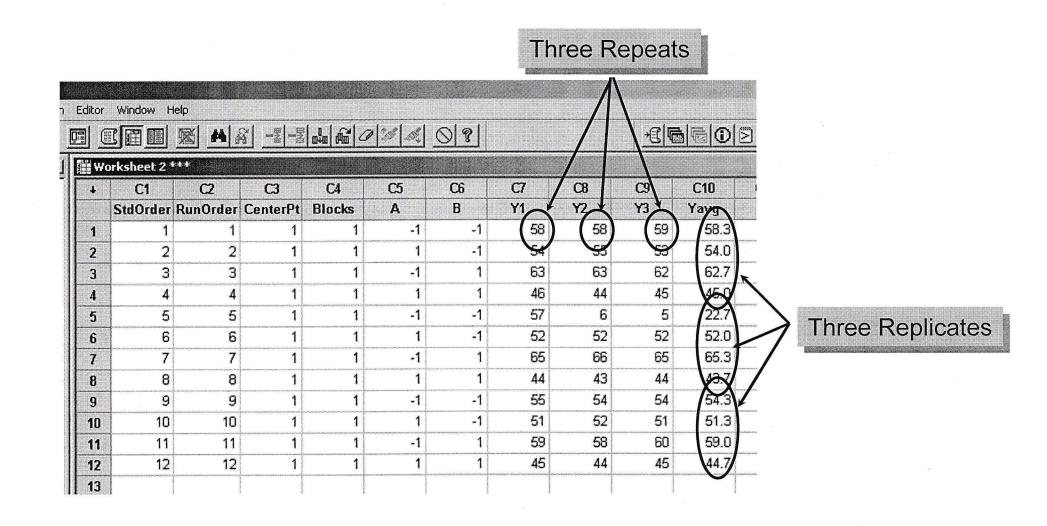
Narrow	Bold
1 lot of material	Several lots
1 Day	Several weeks
1 Machine	5 Machines
1 Operator	Many Operators
100 – 110 psi	100 – 2000 psi

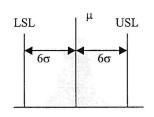
Replication vs. Repetition


of Replications: Refers to the number of times a treatment combination is set up and run. The data collected from a single sample from each run is called a replication.

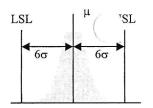
Example: A 2², four run experiment is run and response variable measurement are taken on one part for each run. The values of the single set of response variable measurements is one replication. If the treatment combination is changed then set up again and measured (the experiment is done again), the total data collected (8 values, 4 for each experiment) would represent two replications.

of Repeats: Refers to the number of parts taken and measured from each treatment combination.


<u>Example:</u> A 2², four run experiment is run once and response variable measurement are taken. Three parts are measured per run. The total data collected (12 values, 3 from each run) would represent three repetitions.

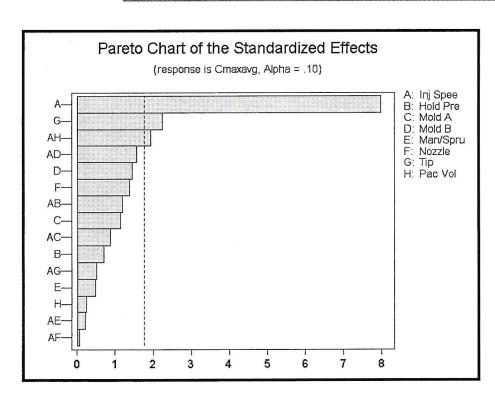

Repeats are simply additional samples measured per run. Replications require additional runs.

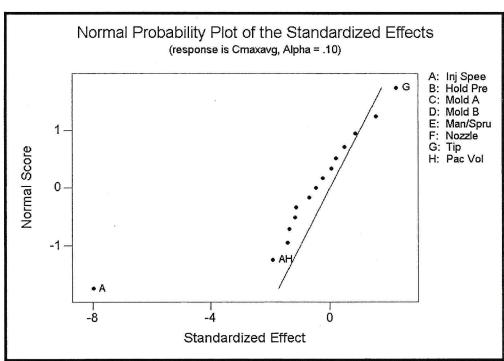
Replication vs. Repetition (con't)



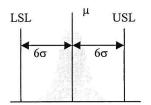
Replication vs. Repetition (con't)

- Significance is determined by comparing variation between runs to variation within runs.
- Replications give us data so we can calculate variation within runs (Setup-to-setup how consistent is a specific set of settings (run) vs. other settings (runs).
- Replications gives us an "error term" so we can calculate significance, repetitions do <u>not</u>.
- Without an error term we cannot estimate significance.


Error is our friend!

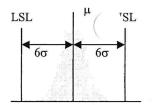


Interpretation of Significance



After we have established an error term we can determine significance by looking at the following graphs:

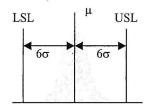
Which effects are significant based on the data above?



Session Window Results

The information below shows significance of effects. Also, coefficients shown can be used to create the Y=f(x) predictive equation.

			······	·····			
Fractional Factorial Fit: Cn	naxavg vers	us Inj Speed	, Hold Press,	*			
Estimated Effects and	d Coeffici	ents for (maxavg (cod	ed units)		
Term	Effect	Coef	SE Coef	T	P		
Constant		-25.17	11.4823	-2.19	8.047		00 00 00 00 00 00 00 00 00 00 00 00 00
Inj Spee	-0.95	-0.47	0.0592	-7.99	(0.000)		
Hold Pre	-0.21	-0.11	0.1534	-0.69	0.500		
Mold A	-0.13	-0.07	0.0586	-1.13	0.279	Clapifican	t ⊏ffooto II
Mold B	-0.19	-0.09	0.0659	-1.44	0.175	Significan	it Ellects
Man/Spru	-0.06	-0.03	0.0638		0.648	/	
Nozzle	-0.30	-0.15	0.1075	-1.37	D-492 K		
Tip	0.28	0.14	0.0617		(0.043)		
Inj Spee*Hold Pre	-0.14	-0.07	0.0607	-1.18	0.856		
Inj Spee*Mold A	0.11	0.05	0.0616	0.87	0.400		
Inj Spee*Mold B	0.27	0.13	0.0859	1.56	0.142		
Inj Spee*Man/Spru	0.03	0.01	0.0617		0.837		
Inj Spee*Nozzle	0.01	0.00	0.0653	0.06	0.957		
Inj Spee*Tip	0.07	0.03	0.0643	0.51	0.620		*
Analysis of Variance	for Cmaxa	vg (coded	units)				
Source	DF	Seq SS	Adj SS	Adj Ms	F	P	
Main Effects	В	7.4720	7.7279	0.9660	9.10	0.000	
2-Way Interactions	7	0.7876	0.9140	0.1306	1.23	0.354	
Residual Error	18	1.3804	1.3804	0.1062			
Total	33 1	1.0974			************************************		

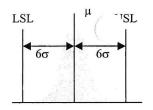


Randomization

- Randomization is the cornerstone underlying the use of statistical methods in DOE's.
- Statistical methods require that the variation (noise or error) be independently distributed random variables.
- Averages out the effects of extraneous factors that may be present.

For example: Slight differences in temperature that may occur throughout a DOE.

Randomize or risk incorrect results!

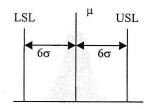


DOE Planning Template

Planning is the single most important part of a DOE. An important tool to help facilitate the planning and document the expectations is the DOE Planning Template (shown on left).

The Tech Con	491*	DOE	Planning Template			
Calle:	1/9/2003					
Name:	Trie-TpCassette So07452 Moid#2					
Tite:	Moki Optim tzato) tor Sirk					
	To de te im lie what factor are sign Mcantin producing sink and in lated response uar tables. It is hope we					
M. L. J. J. D	will be able to demonstrate a process that will produce slike so eDartparamete is can be evaluated to control proposes. Uttimately this information will also be used going to recard to optimize the process is material change is put in place.					
Objective:						
	Hold #2 k a	6 cauty lot to mold t	latproduced park with slik. Attion	of the appear to be an explana		
Exactiground:	eue a t tak DC	E & be ha conducted	to find root cause and possible con	toland i finale icesse a		
ma an Mi America.		ess is developed.				
***************************************	L	ation will not be sign M				
Assumptions:		a boo a will a coto e a ga mi a will a tabolitze a bi 30 m i				
	iem h nias de	a wina kadika a ju ini				
Response Var			Measurement Techniques:			
00,00L,001		#1. #	Per laspect baptas			
	Shk, Stri	7117	Per laspect bapas			
:Dartmeas∗rei Pactora:	11 5 1 2					
	****		Le vel (-1)	Le vel (+1)		
ilection speed			3 1/1	7.5 M/N		
Mod Temp - A			<u>a</u>	120		
Noti Temp - 8	(8 a(x)		<u>a</u>	100		
Hompresser	***************************************		210 bt)	7(D ps)		
acVol (press			1 h #ec	25 luikeo		
Barrel temps d		0228)	380	660		
llandoù & Spr			1.0	690		
Tip settings (16	2		140	1 90		
Resis plock wi	9 46 L . d 3/1	9.4323	P P 1 1 (25	P P 1605		
istan brown	w 15018 - Gay	* 00/L)	- FFIIW	FF 1000		
CHOUDING IN	ere are more	me liteistie with fili	A-1-1			
Not se :	W# 415 III OF L	and is knowed and the	Control Method:	<u>I</u>		
	rane dark la tan	pe ratere a stato lize)	Specify and document	***************************************		
Meas rements		i pe intere e unitary	INSE	***************************************		
uacine uartat			Exiting control (PM, eDart molitoring, training)			
Temp & Nam ki			CLE BIG COLDER (PM, EDAITHORDING, HAILEG)			
10 mp 4 1101 M	:X					
Replication:	Type	s - 2 epibatbus	I			
Random izatio						
De aligni Maitris		A Chinal Stroker	1/16 tractional+1 center=17 mas	v 1 & nilvails xx = 36 m xx		
Le sigit ma ute.	. 4	t b committe DOEs	Natwill lead to critical parameters	1 2 (jepikaiwis) = 34 (14s)		
Est Time/Cost			xatwaread Worldarparaneers xxess Tech, 1 QA, 1 Proj Eig	***************************************		
			1 + press = \$1,920; QE+PE = \$200;	TANL TIRT		
		: 818 - 4084, FIOU I EU	1 + press - 41 320, OCTPC - \$010,	повіт фіда		
Com ments/No	10 s ·					
		a) the mold and doorn	ne st	***************************************		
IN SEA DAY	That work	will took of in dear	es below rozzk or righ settings.			
Delo contra com	Cottot milita	condicted, one with e	TO DENNE TOLLE OF THE REWILL.			
Will block with		warden, vac will c	NACE TO WIE.			
	** # 4 *					

	······		***************************************			



DOE Planning Template (con't)

	Tech Group DOE Planning Sheet				
The Tech Group WE PROVIDE INNOVATIVE SOLUTIONS		.*			
Name:	Date:	Title:			
Phone No:	Location:	Project:			
Objective:					
Background Information:					
Assumptions:					
			9		

The first portion of the DOE Planning Template provides areas to collect general information.

DOE Planning Template (con't)

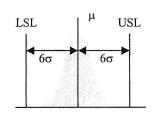
Response Variables:	Measurement Techniques:			
Factors:	Level (-1)	Level (+1)		
Fixed Process Parameters:				
Noise Variables:	Control Method:			
Design Matrix:				

The second portion of the DOE Planning Template provides areas to complete information about the process and the design matrix.

Class Problem #1

Label-Me, a U.S. manufacturer of labels, is in the final steps of developing a new label product.

Historically, Label-Me has experienced problems with the thickness of their label backings. Label-Me investigates the possible process configurations that may contribute to the thickness problem. Label-Me decides they need to select a new paper supplier. Also, since the labels can be printed at one of two plants, they need to select a plant.


Two factors are considered worthy of investigation to eliminate the thickness problem. They are:

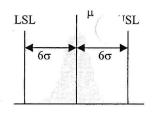
L= Paper Supplier (Supplier A and Supplier B)

P= Plant 1 and Plant 2 (P1 and P2)

They decide to run a factorial experiment with factors L and P (in first and second columns respectively). The experiment is run over the course of one week.

A 2 x 2 factorial design was run with three replicates for each experimental condition (treatment combination).

Class Problem #1 (con't)



Specification = $0.062 \pm .006$

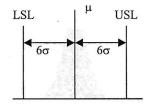
Historical data on similar labels: CR=0.50

Cpk=0.66

- 1. What, historically has been the problem (centering, variation)?
- 2. How does the statement of the problem affect the experiment strategy?
- 3. Knowing there are two variables of interest, Paper Supplier (L) & Plant (P), what questions should be asked?
- 4. How should the data be organized to meet the objectives?
- 5. What assumptions have been made in running the experiment?
- 6. How might these assumptions affect our conclusions?

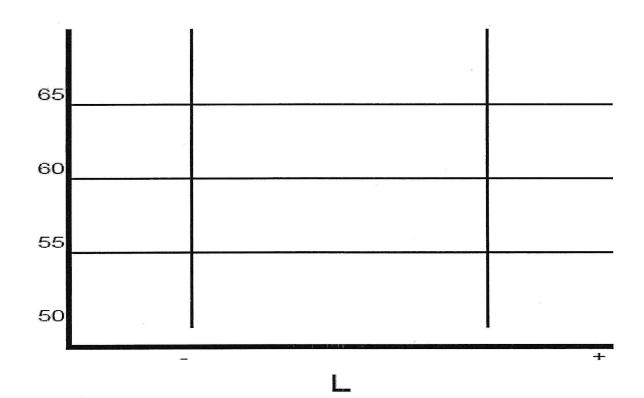
Class Problem #1 (con't)

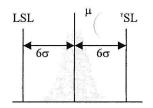
			Response		
L	Р	LP	(0.0xx)	×	R
-	-	+	62,65,59		
+	n :-	-	54,55,55		
-	+	-	61,66,58		
+	+	+	58,58,59		


- 7. Based on the experimental results shown above, draw and analyze an interaction plot (use the following page).
- 8. What else could be analyzed from the experiment results?
- 9. What are the effects of L, P and the LP interaction?

L=

P=


LP=


10. What conclusions could be made?

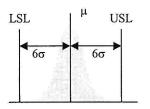
Interaction Plot

Class Problem #2

A machine shop provides parts for the automotive industry. They want to improve the average and consistency of product yields (first pass) in the next generation of parts, and thereby, reduce production costs. Current process yields average 83%. After logical problem solving activities, 2 factors are deemed most likely to cause low yields. An experiment was set up for the factors:

Cutting fluid (C): - Water Base

+ Oil Base

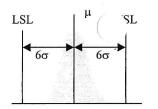

Steel (S): - 310 Stainless

+ 302 Stainless

A 2 x 2 factorial design was run with four replicates for each treatment combination.

Questions:

- 1. How could this experiment be replicated?
- 2. How could this experiment be repeated?
- 3. How should this experiment be run?



Class Problem #2 (con't)

С	S	cs	Response (%Yield)	X avg	R range
-	-	+	76,80,81,83		
+	-	-	80,84,88,89		
-	+	-	80,80,82,86		
+	+	+	86,90,92,92		

- 1. What comments can be made about the response variable?
- 2. What observations can be made about the data?
- 3. What factors may have influenced the results?
- 4. How could the data be analyzed?

Summary

- Designed experiment's are a powerful way to solve complex problems with many variables.
- What are factors and levels and how do you pick them?
- Go bold with factor levels. What could happen if you go too bold? Not bold enough?
- Why do we want an error term in our experiment? How do you get it?
- What is the difference between replication and repetition?
- What is the definition of an interaction?
- Why is it important to randomize?