Collaborative Robots in Manufacturing

2020-10-23, Mikael Hedelind *mikael.hedelind@mdh.se*

Mikael Hedelind

- MSc in computer science, focused on artificial intelligence
- Licentiate engineer in Innovation and design, focused on applied industrial robotics
- Worked as project manager in industry for over 10 years
 - R&D industrial robotics
 - Coordinator of EU projects in robotics and human-robot collaboration
- Worked as a programme manager at Vinnova for two years
- Now working mostly as part of Mälardalen Industrial Technology Center

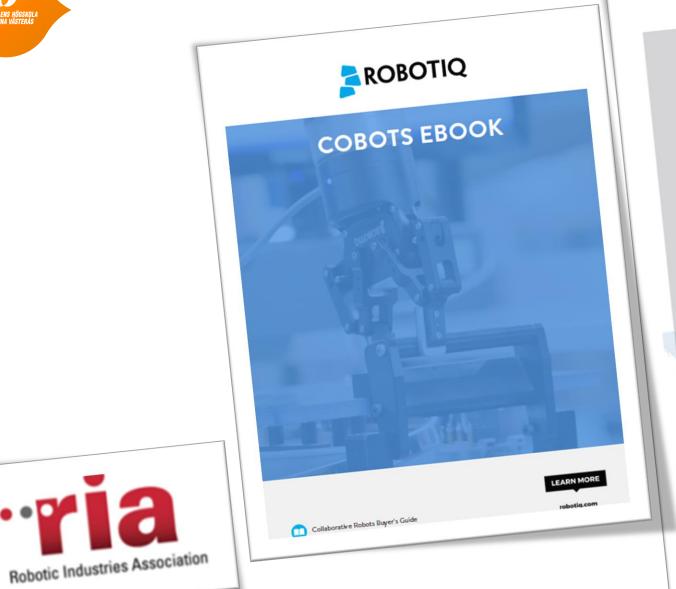
Overview

• What is industrial robotics?

• .. and why?

New "collaborative" type of robots

• What's new?


• How can they be used?

• And where?

• What's ongoing in the field?

World Robotics 2020 - Industrial Robots

produced by VDMA Services GmbH, Lyoner Str. 18, 60528 Frankfurt,

The robot statistics are based on consolidated world data reported by robot suppliers as well as on the statistics of the national robot. robot suppliers as well as on the statistics of the national robot associations of United Kingsom (BARA), Peoples Republic of China (CRIA), Denmark, (DIRA), Japan (JARA), Republic of Korea (KAR), Russian Federation (RAR), North America (RIA), Italy (SIRI) and Chinese Taipel (TAIROA).

The cover is sponsored by Staubil AG.

Proof reading and translations: Fariba Knatami, EUnited Robolics

Assisting in statistics evaluation, text and charts processing: Nina Kutzbach, IFR

We express our most sincere gratitude to all partners!

Dr. Christopher Müller Director

IFR Statistical Department. Tel: +49 69 66 03-11 91 E-mail: statistics@str.org

Internet: http://worldrobotics.org

INTERNATIONAL

ISO 10218-2

> First political 2011-01-01

Robots and robotic devices — Safety requirements for industrial robots —

Part 2: Robot systems and integration

Roboto el disposible robotiques — Evigences de sécuréé pour

Partie 2: Systèmes robots et resignation

ISO/TS 15066:2016 **Robots and Robotic Devices -Collaborative Robots**

ISO


(60 10218-2:2511(E)

0:50 2011

Robotics

1921 - Karel Čapek - Rossum's Universal Robots

1942 – Isaac Asimov - Runaround, first to use the word robotics

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey orders given it by human beings except where such orders would conflict with the First Law.
- 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Zeroth Law: "A robot may not harm humanity, or, by inaction, allow humanity to come to harm;"

Hero (or Heron) of Alexandria – "aeolipile" – First documented steam engine and a wind organ

Jaquet Droz "The Writer" Automata

10-70

1774

A robot is a mechanical or virtual, artificial agent.

Characteristics of a robot:

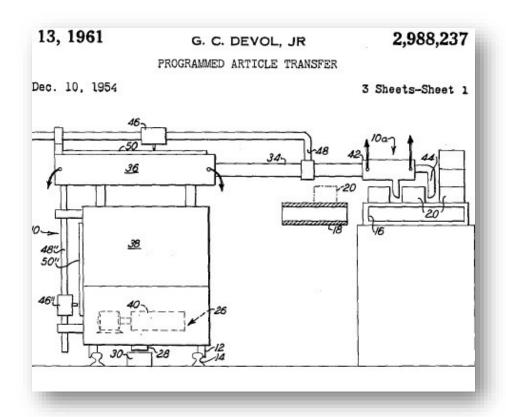
- Is not 'natural' it has been artificially created
- Can sense its environment
- Has some degree of intelligence, or **ability to make choices** based on the environment, or automatic control / pre-programmed sequence
- Is re-programmable
- Can **manipulate** things in its environment
- Appears to have intent or agency

A robot is simply a machine that seems to exhibit "*intelligent behaviour*" by performing an action cued by an external stimulus or cued by an internally programmed instruction.¹



Types of robots

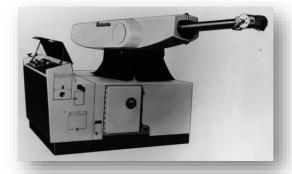
Sample of what is out there


Industrial robots

- Field robots
- Space robots
- Health robots
- Toy robots
- Domestic robots
- Virtual robots
- Humanoid robots

Industrial Robots

1954 - George Charles Devol Jr. - Unimate


"You know, there aren't many people who get a chance to start a whole new industry"

1960 – Joseph F. Engelberger - *Unimation* sells the first robot to General Motors used for lifting hot metal sheets after die-casting

1973 – ASEA – The first microprocessor controlled electrical robot

1979 – Robert Williams – First human to die by a robot, Ford Motor CO. The robot was supplied by Unit Handling Systems, a division of Litton Industries, had a weight of 1 ton and had no safety systems.

Why industrial automation?

Dull, Dirty, Dangerous

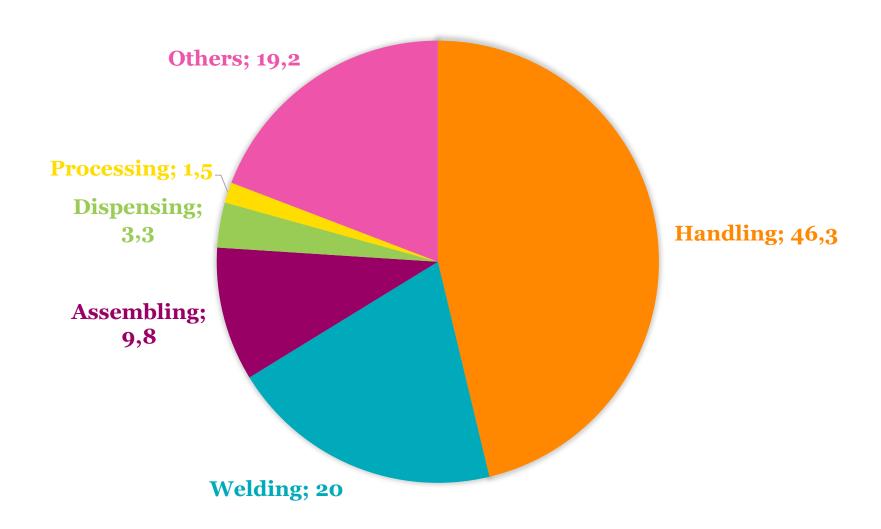
Development has mainly been driven by the needs of the **automotive industry**

First robots were made for **machine tending**, but the one main application has been **welding** and other **body in white operations**

General industries and consumer industries becomes more important

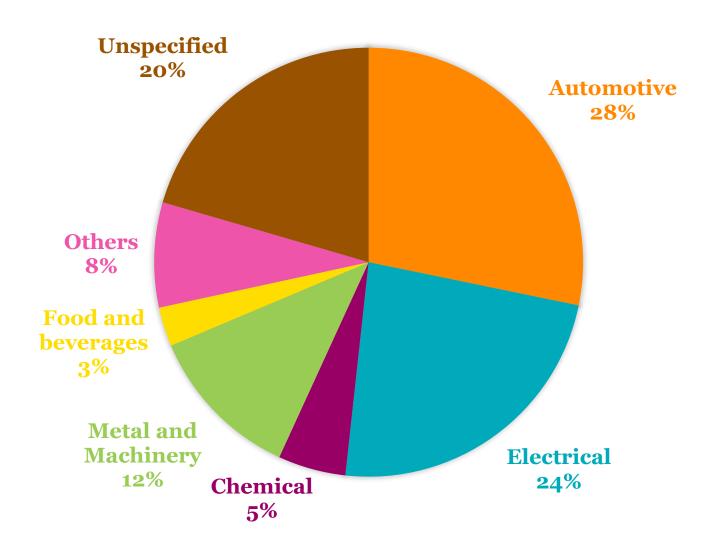
The robot systems get more and more sophisticated

Increasing amount of software involved



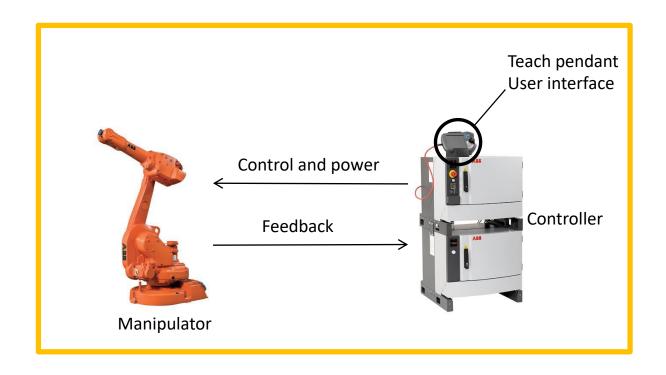
Some data for 2019

- 2019 saw the first decline after six consecutive years of growth, with approximately 373,000 units sold in 2019 (-12% compared to 2018).
- The decline was broad -based across all regions- with Asia and the Americas both down -13% followed by Europe -5%, reflected in almost all industries, led by declines in Electrical & Electronics -17% and Automotive -16%.
- China remained the largest market accounting for 38% of total worldwide installations, despite fewer units sold (-9%), followed by Japan with 13% and United States with 9% of total installations.
- By the end of 2019, approximately 2.7 million units (+12% compared to 2018) of industrial robots have been in operation worldwide.



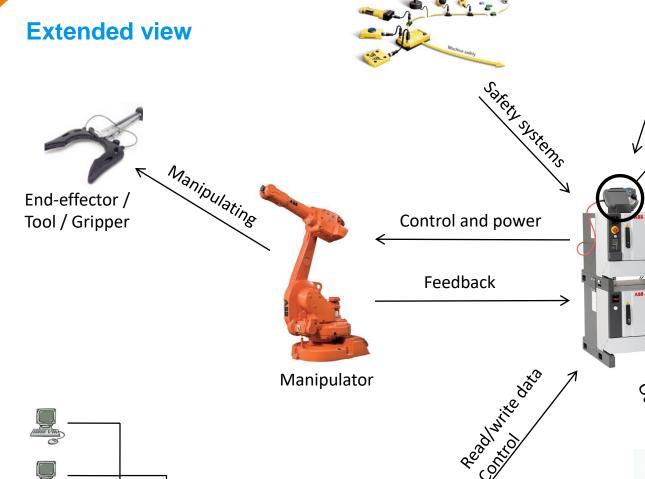
ROBOTS PER APPLICATION (%), 2019

ROBOTS PER INDUSTRY, 2019

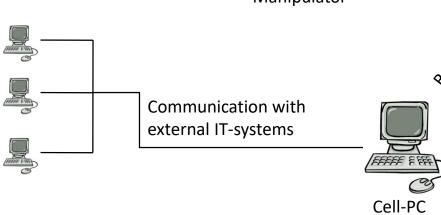

2020 and forward

- While COVID- 19 is the greatest single catalyst for change in industry in a generation, it hasn't started any new trends. Instead, it has accelerated four mega-trends that are fundamentally changing the face of manufacturing in the long-term: the individualized consumer, labor shortages, uncertainty and digitalization.
- Technology, in the shape of **robotics and automation**, and enabled by **artificial intelligence**, offers many solutions to the challenges presented by these four mega-trends and by major events such as the pandemic. The pace of change and adoption of robotics driven by AI is accelerating from the largest global blue-chip companies to the smallest workshops and SMEs.

Robot System

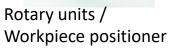

What is included?

Robot System



Robot System

- Difficult to get an overview
- Lots of engineering involved

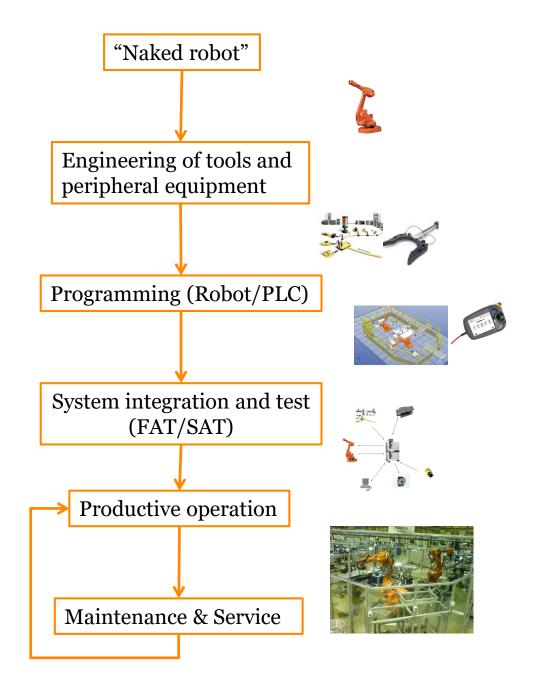


PLC

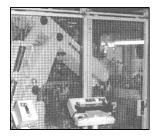
Teach pendant User interface

Controller

Input

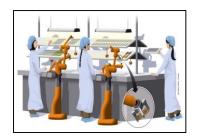


Sensors


- Most robots are sold through a tier business model
 - Robot manufacturer
 - System integrator
 - End user

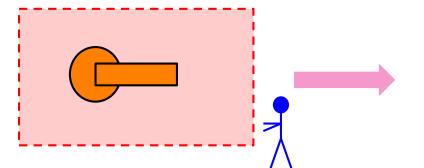
- System integrator
 - Buys the robot from the manufacturer
 - Builds a system that contains the robot
 - Installs the robot system at the end user

Evolution of safety concepts

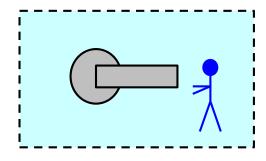


absolute separation of robot and human workspaces

complete union of robot and human workspaces


Discrete safety
→ No HRC

Safety controllers


→ Limited HRC

Harmless manipulators
→ Full HRC

Conventional industrial robots

Collaborative industrial robots

First HRC applications

Human strengths

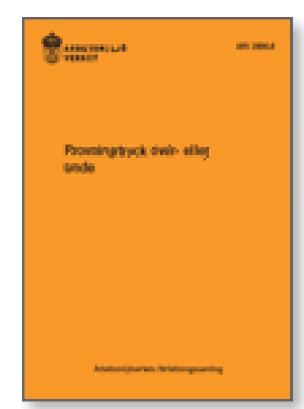
- Cognition
- Reaction
- Adaptation
- Improvisation

Robot strengths

- Force
- Repeatability
- Quality

Purpose

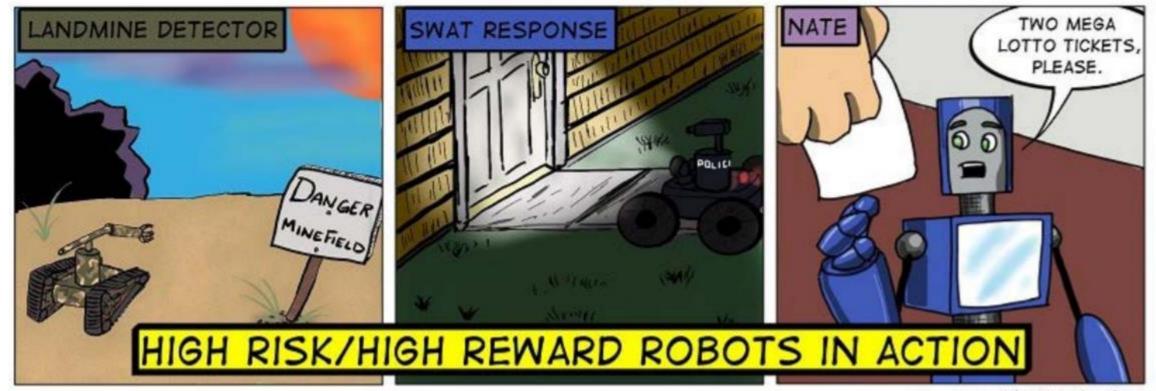
The directive, which is about product safety, means that safety must be integrated in the product in all phases, from design to usage.

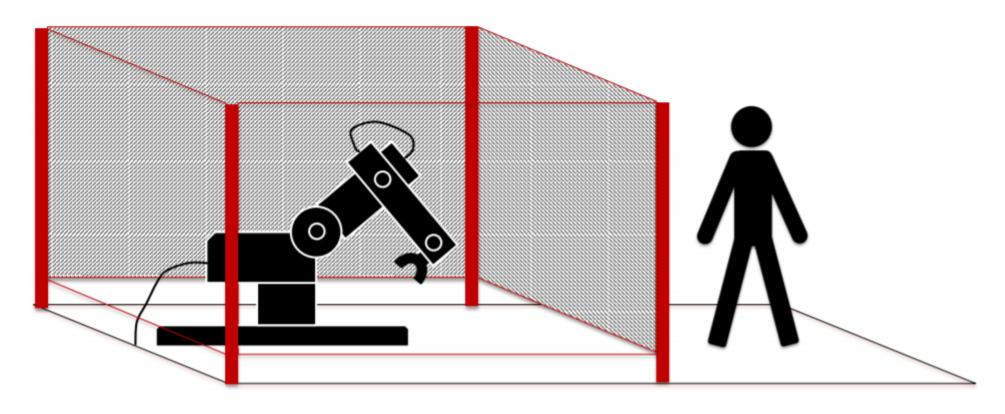

In short the following three step principle should be applied:

- 1, Design to ensure safety
- 2, Protect the user from all dangerous parts/components
- 3, Warn the user of all remaining risks

Risk assessment oreseeable) risks,

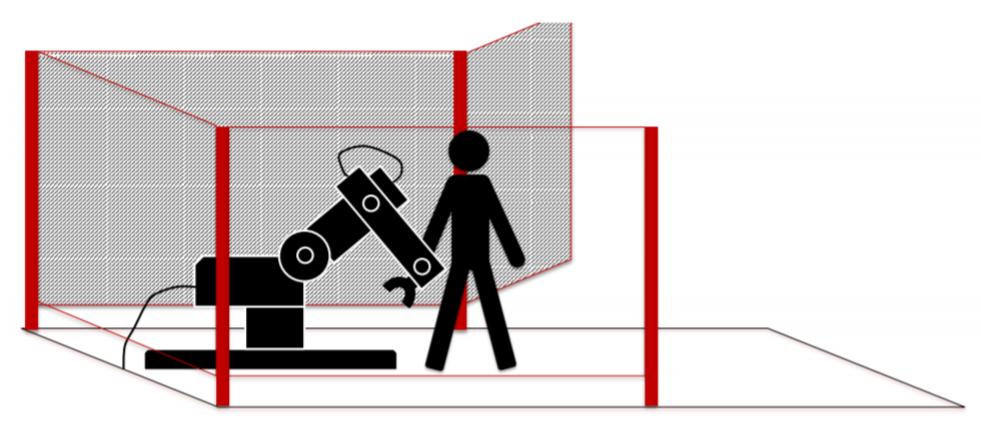
One way of ensuring safety in a product is to map all possible (foreseeable) risks, their root-cause, effects, and the measures taken to avoid the risks.


"European machine directive"
Maskindirektivet is included in Swedish law through AFS 1994:48


What is risk?

RISK = Likelihood * Consequence

Traditional Industrial Robot Risk Reduction

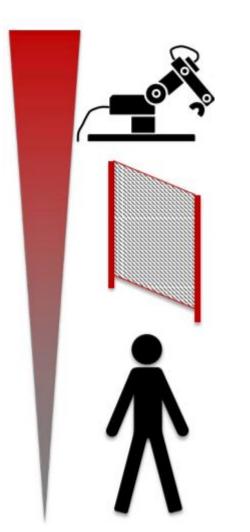


In production operation or automatic mode, operators are prevented from accessing the machine with safeguarding devices.

Traditional Industrial Robot Risk Reduction

Accessing the machine requires:

- removing the safeguards, and
- limiting, controlling or eliminating the machine's energy



Hierarchy of risk reduction

Elimination	
Substitution	
Safeguarding	
Awareness Means	
Admin Controls	
PPE	

Hierarchy of risk reduction

The EU machine directive and other regulations require machine manufacturers to provide guarding to protect operators and employees from hazards.

Consensus standards (ISO, ANSI, CSA) provide guidance for the safe integration and application of machinery, but presume safeguarding is necessary to reduce risk.

Awareness means, administrative controls and PPE are an effective means of reducing residual risk AFTER hazards are reduced through engineered means.

Safety

Inner and outer safety

Outer Safety

- Safety relays / sensors
- Light beams / light curtains
- Physical fences/walls

- Three position "hold-to-run" device
- Reduced speed
- Training!!!

Traditional industrial robots vs. Collaborative industrial robots

What is a Collaborative Robot?

• IFR definition:

A collaborative industrial robot is an industrial robot that is designed in compliance with ISO 10218-1 and intended for collaborative use.

Notes on ISO 10218-1:2011

- ISO 10218-1:2011 specifies requirements and guidelines for the inherent safe design, protective measures and information for use of industrial robots. It describes basic hazards associated with robots and provides requirements to eliminate, or adequately reduce, the risks associated with these hazards.
- ISO 10218-1:2011 does not address the robot as a complete machine. Noise emission is generally not considered a significant hazard of the robot alone, and consequently noise is excluded from the scope of ISO 10218-1:2011.
- ISO 10218-1:2011 **does not apply to non-industrial robots**, although the safety principles established in ISO 10218 can be utilized for these other robots.

What is ISO/TS 15066?

ISO/TS Technical Specification

- A voluntary document with normative language representing technical consensus of the committee
- "More" than a technical report, expected to become a standard but not quite ready to be a standard now

Provides guidance not in ISO 10218-1 & -2

- Collaborative operation consist of approximately 8 pages out of 152 total pages in ISO 10218-1 & -2
- ISO 10218-1 first introduced the concept of collaborative applications in 2006, which was revised in 2011

Important notes on the IFR definition

A collaborative industrial robot is an industrial robot that is designed in compliance with ISO 10218-1 and intended for collaborative use.

- Robots that are designed for collaborative use but not used collaboratively are included in the statistics.
- Traditional robots that are used in a collaborative application (e.g. by upgrading the unit with the relevant sensors and software) are not included.

Year	Cobot installations	Total industrial robot installations	Cobot share	Growth year-over-year
	units	units	%	%
2017	11,107	399,640	2.78%	
2018*	16,217	422,271	3.84%	+46%
2019	18,049	373,240	4.84%	+11%

Important notes on the IFR definition

A collaborative industrial robot is an industrial robot that is designed in compliance with ISO 10218-1 and intended for collaborative use.

- The definition implies that a cobot is **necessarily an industrial robot** as defined in ISO 8373:2012 (cf. chapter 1.7.1). This excludes all kinds of service robots that also usually operate in the same workspace as humans. Cobot statistics is a proper subset of industrial robot statistics.
- Compliance with ISO 10218-1 is by self-declaration of the robot supplier.
- Standard only refers to the robot and not to the final application. For statistical relevance, it is not decisive whether the end user puts the unit into a collaborative application.

ISO 10218-1:2011

Robots and robotic devices - Safety requirements for industrial robots - Part 1: Robots (ISO 10218-1:2011)

There are four important functions a Robot needs to have in order to be suitable for Collaborative Applications:

- 1- Safety rated monitored stop
- 2- Hand guiding
- 3- Speed and separation monitoring (SSM)
- 4- Power and force limiting (PFL)

Safety Rated Monitored Stop

What the collaborative robot does in the presence of an operator or obstruction

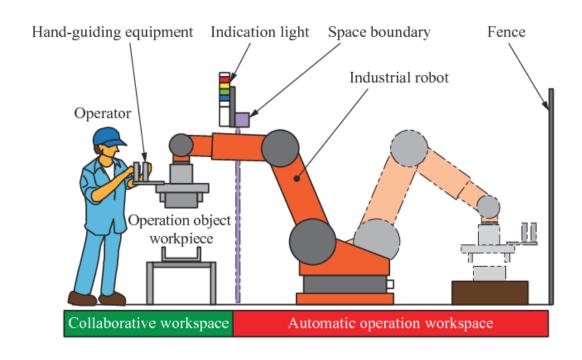
- Stop-motion condition ensured
- Drive power remains on
- Motion resumes after obstruction clears
- Robot motion resumes without additional action
- Protective stop delivered if stop condition is violated

Applications

- Direct part loading or unloading
- Work-in-process inspections
- When 1 moves (not both) in collaborative workspace
- Standstill function in other collaborative operations

Robot motion or stop function		Operator's proximity to collaborative workspace	
		Outside	Inside
ace	Outside	Continue	Continue
oximity e worksp	Inside and moving	Continue	Protective stop
Robot's proximity to collaborative workspa	Inside, at Safety - Rated Monitored Stop	Continue	Continue

Truth table for safety-rated monitored stop operations.


Hand guiding*

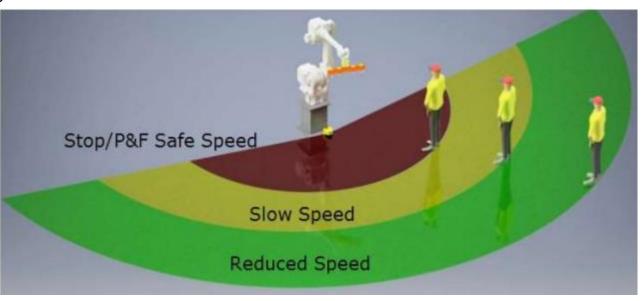
Where an operator leads robot movement through direct interface

- Robot stops when operator arrives (Safety-rated monitored stop)
- Operator grasps enabling device, activating motion
- Robot motion responds to operator commands
- Non-collaborative operation resumes when operator leaves collaborative workspace

Applications

- Robotic lift assist
- Highly variable applications
- Limited or small-batch productions

Speed & Separation Monitoring


Where the robot speed reduces when an obstruction is detected, separation distances are monitored (scanners, vision systems, proximity sensors)

 Robot speed directly correlates to separation distance zones dictate allowable speed

 Stop condition given if direct contact proximity is attained (Safety-rated monitored stop)

Applications

- Simultaneous tasks
- Direct operator interface

Power And Force Limiting

Where incidental contact initiated by robot are limited in energy to not cause operator harm

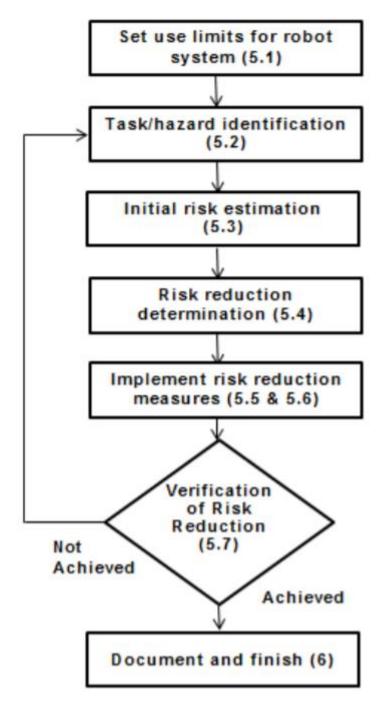
- Forces robot can exert are limited
- Robot system design eliminates pinch points, sharp edges, etc.
- Robot complies and reacts when contact is made

Applications

- Small or highly variable applications
- Conditions requiring frequent operator presence
- Machine tending
- Loading/unloading

ISO 10218-2:2011

Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration (ISO 10218-2:2011)

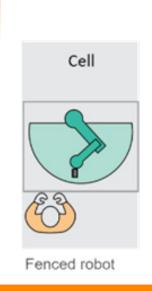

- This part of ISO 10218 specifies safety requirements for the integration of industrial robots and industrial robot systems as defined in ISO 10218-1, and industrial robot cell(s). The integration includes the following:
 - a) the design, manufacturing, installation, operation, maintenance and decommissioning of the industrial robot system or cell;
 - b) necessary information for the design, manufacturing, installation, operation, maintenance and decommissioning of the industrial robot system or cell;
 - c) component devices of the industrial robot system or cell.

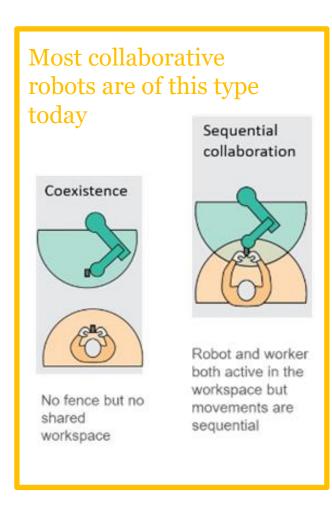
Risk Assessment

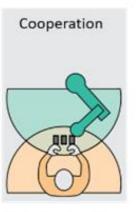
Part 2 requires a risk assessment for collaborative applications to evaluate task/hazard combinations and set appropriate limits

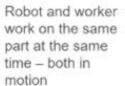
- Means of anticipating tasks and hazards with the goal of applying suitable risk reduction measures
- Uses an iterative process as a means to determine that risk reduction measures applied can achieve their desired effect
- Avoids "one size fits all" prescriptive measures, which can either be too restrictive or can require defeating safeguards in order to accomplish certain tasks

ABB Yumi Safety Concept

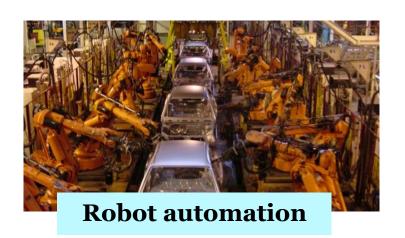

Measures for risk reduction and ergonomics improvement	Level 6	Perception-based real-time adjustment to environment			ept	
	Level 5	Personal protective equipment			ecific	ABB collaborative industrial robot concept
	Level 4	Software-based collision detection, manual back-drivability				
	Level 3	Power and speed limitation	Transient contact Quasi-static contact	application-specific	indust	
	Level 2	Injury-avoiding mechanical design and soft padding			applica	orative
	Level 1	Low payload and low robot inertia		Other,	3 collab	
Robot system – mechanical hazards						ABE






Levels of collaboration

Requirement for intrinsic safety features vs. external sensors



Robot responds in real-time to movement of worker

New Challenges

New challenges

Open world \rightarrow Perception and adopting to changes

New users \rightarrow Ease of use

Short product life-cycle → High flexibility requirements

Difficult application → New ways to teach the robot the task

Challenges in HRC

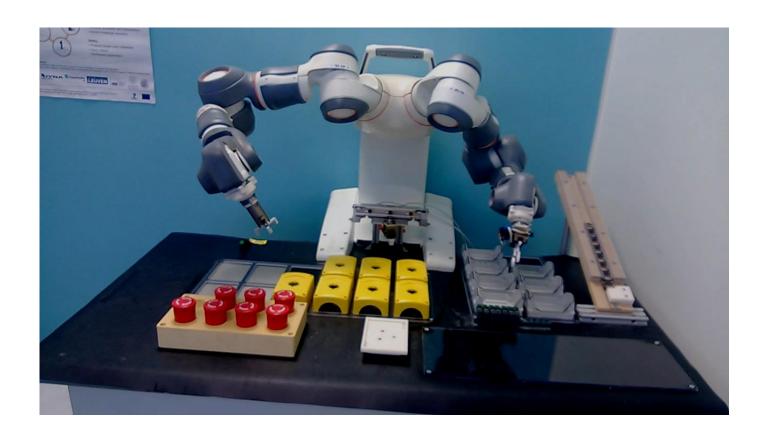
- Safe interaction
 - Safety standards
 - Collaborative operating modes
- Intuitive Interfaces
 - Programming approaches
 - Input modes
 - Reality enhancement
- Design methods
 - Task planning and task allocation
 - Control laws
 - Sensors

Research project on cognitive robots

Intuitive ways of instructing the robot

- Task-level instruction
- Skill and knowledge representation

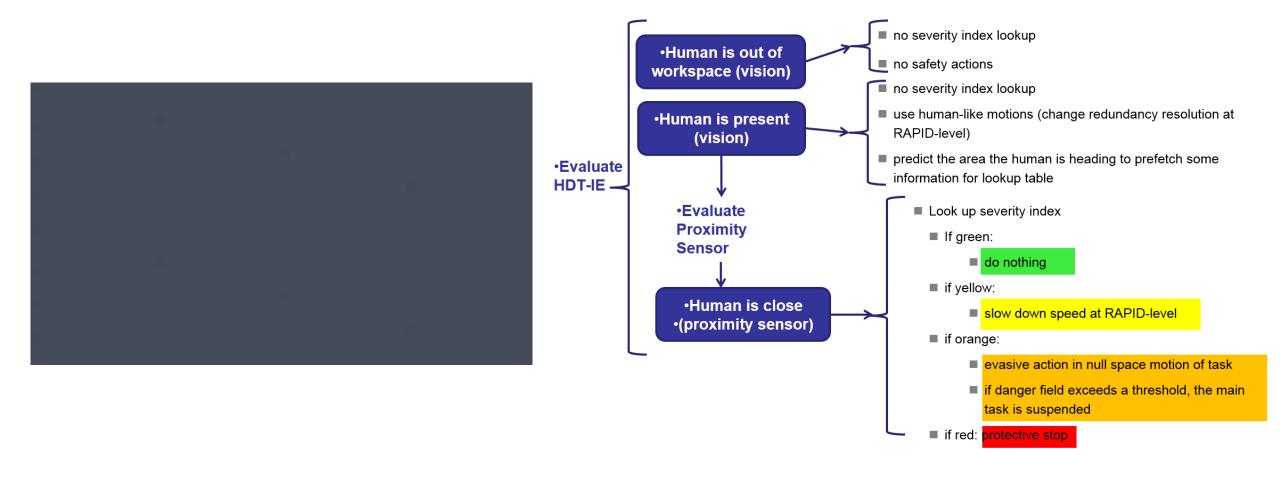
Robot control


- Sensor integration
- Dual-arm assembly

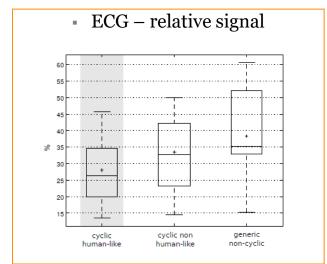
Learning

- Skill-based architectures
- Semantic acquisition and interpretation

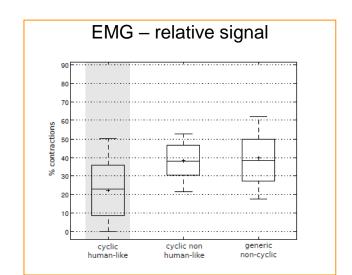
Safety

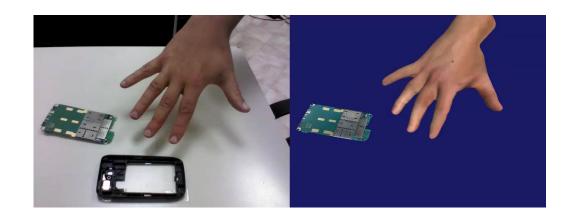

- Physical human-robot interaction
- Workspace supervision

Research project on cognitive robots



Human-centric robot motion




- All stress indicators show lowest levels for human-like motion
- ECG Electrocardiography
- SCR Skin conductivity, resistivity
- EMG Electromyography

Approach

- Physical setup
- Learning from observation
- Reasoning and virtual environment
- Learning by doing
- Production

Research Areas

- Observe human assembly
- 3D Vision
- Tactile sensors in hand
- Physical human robot interaction
- Shared knowledge repository
- Intelligent grasp and manipulation control

Approach

- Physical setup
- Learning from observation
- Reasoning and virtual environment
- Learning by doing
- Production

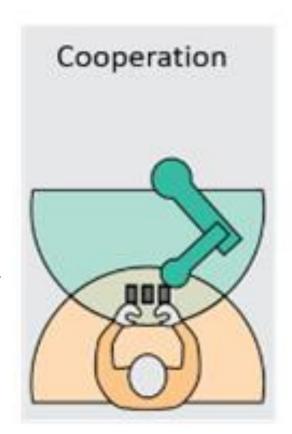
Research Areas

- Observe human assembly
- 3D Vision
- Tactile sensors in hand
- Physical human robot interaction
- Shared knowledge repository
- Intelligent grasp and manipulation control

The absence of holistic, digitally networked solutions [..] hindered the speedier application of collaborative robotic solutions. Human-robot collaboration (HRC), – the prospects for which have been considerably hyped in recent years –has only made relatively slow progress in industry.

The number of HRC systems sold has remained well below expectations until very recently. It is only now, with the integration of HRC workstations into the smart factory, that cobot sales are starting to pick up momentum.

Robotics and Al



So, what is a collaborative robot?

So really, a collaborative robot is defined by...

- The complete robot system,
- The task the robot is performing,
- The space in which the task is being performed, and
- The timing at which a task is being performed

...and not just the robot itself!

Thank you for your kind attention!

2020-10-23, Mikael Hedelind *mikael.hedelind@mdh.se*

Production engineering courses autumn 2020 (5 credits/course)

Open for application until November 2:

• **Big Data and Cloud Computing for Industrial Applications** Study period 2020-11-09 - 2021-01-17

• Industrial maintenance development

Study period 2020-11-09 - 2021-01-17

For more information, visit mdh.se/premium

Production engineering courses spring 2021

(5 credits/course)

Optimization of production systems

Study period 2021-01-18 – 2021-03-28

Visualization for industrial applications

Study period 2021-01-18 – 2021-03-28

Industry 4.0 – Introduction

Study period 2021-03-29 - 2021-06-06

Industry 4.0 – Realisation

Study period 2021-03-29 - 2021-06-06

Industrialization and Time-to-Volume

Study period 2021-03-29 - 2021-06-06

For more information, visit mdh.se/premium