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UNDERSTANDING THE STATISTICAL POWER OF A TEST

Hun Myoung Park
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UITS Center for Statistical and Mathematical Computing

How powerful is my study (test)? How many observations do I need to have for what I
want to get from the study? The statistical power analysis estimates the power of the test
to detect a meaningful effect, given sample size, test size (significance level), and
standardized effect size. Sample size analysis determines the sample size required to get a
significant result, given statistical power, test size, and standardized effect size. These
analyses examine the sensitivity of statistical power and sample size to other components,
enabling researchers to efficiently use the research resources.

1. WHAT Is A HYPOTHESIS?

A hypothesis is a specific conjecture (statement) about a property of population. There is
a null hypothesis and an alternative (or research) hypothesis. Researchers often expect
that evidence supports the alternative hypothesis. The null hypothesis, a specific baseline
statement to be tested, usually takes such forms as “no effect” or “no difference.”’ A
hypothesis is either two-tailed (e.g., H, : 2 =0) or one-tailed (e.g., H, : £ >0 or

H, 1 <0).?

Three points deserve being taken into account in making a hypothesis. A hypothesis
should be specific enough to be falsifiable; otherwise, the hypothesis cannot be tested
successfully. Second, a hypothesis is a conjecture about a population (parameter), not
about a sample (statistic). Thus, H, : X = 0 is not valid because we can compute and
know the sample mean X from a sample. Finally, a valid hypothesis is not based on the

sample to be used to test the hypothesis. This tautological logic does not generate any
productive information.’

2. SIZE AND POWER OF A TEST
The size of a test, often called significance level, is the probability of Type I error. The

Type I error occurs when a null hypothesis is rejected when it is true (Table 1). This test
size is denoted by a (alpha). The 1- a is called the confidence level.

! Because it is easy to calculate test statistics (standardized effect sizes) and interpret the test results
(Murphy 1998).

2 1 (Mu) represents population mean, while X denotes sample mean.

* This behavior, often called “data fishing,” just hunts a model that best fits the sample, not the population.
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In a two-tailed test, the test size (significance level) is the sum of the two symmetric areas
at the tails of a probability distribution. See the shaded areas of two standard normal
distributions in Figure 1. These areas are called null hypothesis rejection regions in the
sense that we reject the null hypothesis if a test statistic falls into these regions. The test
size is a subjective criterion, although the .10, .05, and .01 levels are conventionally used.

Table 1. Size and Power of a Test

Do not reject Hy Reject Hyp
Hp is true | Correct Decision Type I Error
Size of a test
1-a: Confidence level a: Significance level
Hyis false | Type II Error Correct Decision
B 1-B: Power of a test

Think about the .05 test size (see B in Figure 1). We need to know a particular value from
which the sum of the areas up to the both infinities is .05. The value is called the critical
value of the significance level. Critical values depend on test statistics, probability
distributions, and test types (one-tailed versus two-tailed).

Figure 1. Test Size (Significance Level) and Critical Value
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For example, the 1.96 (-1.96) in the standard normal distribution is the critical value of
the two-tailed test at the .05 test size (significance level). Thus, the test size is the sum of
probabilities that a sample statistic goes beyond the critical value (larger than 1.96 and
less than -1.96). In the standard normal distribution, the critical value of a two-tailed test
at the .10 significance level is 1.645 (see A in Figure 1) and 2.58 for the test size .01. As
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test size (significance level) decreases, the critical value is shifted to the extremes; the
rejection areas become smaller; it is less likely to reject the null hypothesis.

How do we substantively understand the test size or significance level? It is the extent
that we are willing to take a risk of making wrong conclusion. The .05 level means that
we are taking a risk of being wrong five times per 100 trials. A hypothesis test using a
lenient test size like the .10 is more likely to reject the null hypothesis, but its conclusion
is less convincing. In contrast, a stringent test size like .01 reports significant effects only
when the effect size (deviation from the baseline) is large. Instead, the conclusion is more
convincing (less risky). For example, the 1.90 in Figure 1 is considered exceptional at

the .10 level (A), but not statistically discernable at the .05 level (B).

What is the power of a test? The power of a statistical test is the probability that it will
correctly lead to the rejection of a false null hypothesis (Greene 2000). The statistical
power is the ability of a test to detect an effect, if the effect actually exists (High 2000).
Cohen (1988) says, it is the probability that it will result in the conclusion that the
phenomenon exists (p.4). A statistical power analysis is either retrospective (post hoc) or
prospective (a priori).

The statistical power is denoted by 1 — 3, where B (beta) is the Type II error, the
probability of failing to reject the null hypothesis when it is false (Table 1). See the
shaded areas of B and B’ in Figure 2. Conventionally a test with power greater than .8
level (or 3<=.2) is considered statistically powerful.

3. COMPONENTS OF THE STATISTICAL POWER ANALYSIS

What do we need to consider when conducting the statistical power analyses? There are
six components:

1. Model (test)

2. Standardized effect size: (1) effect size and (2) variation (variability)
3. Sample size (n)

4. Test size (significance level a)

5. Power of the test (1-B)

A research design contains specific models (tests) on which their statistical powers are
based. Different models (tests) have different formulas to compute test statistics. For
example, the T-test uses the T distribution to determine its statistical power, while
ANOVA depends on the F distribution.

A standardized effect size, a test statistic (e.g., T and F scores) is computed by combining
the effect size and variation.* An effect size in actual units of the response is the “degree
to which the phenomenon exists” (Cohen 1988). Alternatively, an effect size is the
deviation of hypothesized value in the alternative hypothesis from the baseline in the null

* In T-test, for example, the deviation (effect size) is divided by the standard error.
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hypothesis. Variation (variability) is the standard deviation of population. Cohen (1988)
calls it the reliability of sample results. This variation usually comes from previous
research or pilot studies; otherwise, it needs to be estimated.

Sample size (N) is the number of observations (cases) in a sample. As mentioned in the
previous section, the test size or significance level (o) is the probability of rejecting the
null hypothesis that is true. The power of the test (1-8) is the probability of correctly
rejecting a false null hypothesis.

4. POWER ANALYSIS USING AN EXAMPLE

The computation of statistical power depends on specific a model (or test). The easiest
model is the T-test with a relatively simple formula.

Imagine a random variable like the number of deaths per 100 thousand people from lung
cancer. Suppose that the variable is known to be normally distributed with a mean of 20
and a standard deviation of 4 (H : ¢z = 20). See the probability distribution A in Figure

2.

Now, we believe that the mean is not 20, but 22 with the same standard deviation. See the
probability distribution B in Figure 2. We also think that test size .05 will be fine. So, we
are going to conduct a two-tailed T-test at the .05 significance level with the alternative
hypothesis that the population mean is 22 (H, : # = 22). How can we test our conjecture

(alternative hypothesis)? Suppose we took a random sample with 44 observations from
the population.

Think about the ordinary T-test first. We need to know how far the 22 is deviated from
the baseline 20. Of course, the distance (effect size) is 2 (=22-20). But we do not know
how big the effect size 2 is. Put differently, we do not know exactly how likely such a
sample mean 22 can be observed if the true mean is 20. This is why people try to take
advantage of using standardized probability distributions (e.g., T, F, and Chi-squared).
By looking through these distribution tables, we are able to know the likelihood of
observing a sample statistic in fairly easy manner. The A’ in Figure 2 is a standardized
probability distribution of A. The 20 in A corresponds to 0 in A’ and 21.2161 in A is
equivalent to 2.0167 in A’.

The t statistic here is 3.3166248: t = X—H \/ﬁ = 22 ; 20 \/ﬂ This value is located all
S

the way to the right in A’, indicating the p-value is extremely small.” If the null
hypothesis of population mean 20 is true, it is quite unlikely to observe the sample mean
22 (p<=.01). Obviously, the conjecture of population mean 20 is not likely. Thus, the null
hypothesis is undoubtedly rejected in favor of the alternative hypothesis.

> The p-value of a test statistic is the sum of probabilities that the statistic and more exceptional (closer to
both extremes) sample statistics are observed when the null hypothesis is true.
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However, this test does not tell anything about the power of the test. We may want to
know the extent that a test can detect the effect, if any. So, the question here is, “How
powerful is this T-test?” There are four steps to compute the statistical power.

Figure 2. Statistical Power of a T-test
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First, find the critical value in the original probability distribution with mean 20 and
standard deviation 4. Let us use the standardized probability distribution A’ to know the
corresponding critical value in the original distribution A. By looking at the T distribution
table (df=43 at the .05 level), we know that the probability of being greater than or equal
t0 2.0167 1s .025 (see A’ in Figure 2). Note that another .025 area is located at the
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opposite direction because it is a two-tailed test. The 2.0167 is equivalent to
21.2161=2.0167* 4/ V44 420 in the original probability distribution A.°

Next, imagine an alternative probability distribution with mean 22 and standard deviation
4 (see B in Figure 2). It is the original probability distribution shifted to the right by 2
units. What is the probability of being less than the 21.2161 in the alternative probability
distribution B? The probability is B. In order to know B, again let us convert the original
value into the standardized probability distribution of the alternative probability
distribution. The question is, “What is the T value for the 21.21611 in the alternative
probability distribution?” (B and B’ in Figure 2) The computations are made by one of
the two approaches. We got -1.2999329.

t, = 2.0166919—%«/@ = -1.2999329
[ 2121611122 7o

a

=-1.2999328

Third, find B from the T distribution table with 43 (=N-1) degree of freedom. We can
read .10027466. This B is the probability of falling into the region less than or equal to
the -1.2999328 in the standardized alternative probability distribution (see B’ in Figure 2).

Finally, compute the statistical power, 1 - g =P(t >t,). The power is .89972532 (=1-

.10027466). See the shaded areas of B and B’ in Figure 2. This high statistical power
indicates that this T-test is highly likely to detect the effect or reject the null hypothesis
that the population mean is 20.

5. RELATIONSHIP AMONG THE COMPONENTS

Now, let us talk about how the components mentions in section 3 are related to each other.
First, a model (or a test) dictates the formula for standardized effect sizes (test statistics).

. X - S .
For example, T-test computes a standardized T score as t = i Jn, where —= is an

s Jn

estimated population standard deviation (variation).

How do standardized effect sizes affect the statistical power? As a standardized effect
size increases, the power increases (positive relationship). Imagine an alternative
probability distribution with mean 23. In order word, shift the alternative probability
distribution B to the right by one unit, holding original probability distribution constant.
Effect size becomes larger (3=23-20). It is obvious that B becomes smaller and the
statistical power, in turn, increases. By the same token, the power becomes smaller if we

)_
©2.0167 = %\/ﬂ
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shift the alternative distribution to the left by one to have mean 21. If the standardized
effect size 1s small, it is difficult to detect effects even when they exist; it is less powerful.

Now, how does the size of a test (significance level) affect the statistical power? If a
researcher has a lenient significance level like the .10 rather than the .05 or .01, the
statistical power of the test becomes larger (positive relationship).

Imagine a line connecting 2.0167 in A’, 21.2161 in A and B, and -1.2999 in B’. And then
shift the line to the left, leaving all probability distributions untouched. What will happen?
The test size (alpha=significance level) increases; critical values in A and A’ are shifted

to the left, increasing rejection areas; 5 decreases; and finally statistical power increases.’
Conversely, if we have a stringent significance level, the power of the test decreases; we
are moving the line to the right!

Figure 3. Relationships among the Components

Standardized
Effect
Size

Fositive (+)

—Posifive (+)

Sample
Size

Positive (+)

How about the sample size? A larger sample size generally leads to a parameter estimate
with smaller variances, a larger standardized effect size, eventually, a greater ability to
detect a significant difference (positive relationship). Look at the T statistic formula.

In general, the most important component affecting the statistical power is the sample
size. In fact, there is a little room to change a test size (significance level). It is also

7 There is a trade-off between the Type I error (alpha) and Type II error (beta). Moving the line to the left
increases the Type I error, reducing the Type II error.
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difficult to control effect sizes in many cases. It is costly and time-consuming to get more
observations, of course. But the frequently asked question in practice is how many
observations need to be collected.

However, if too many observations are used (or if a test is too powerful with a large
sample size), even a trivial effect will be mistakenly detected as a significant one. Thus,
virtually anything can be proved regardless of actual effects. (High 2000). By contrast, if
too few observations are used, the hypothesis test will result in low statistical power.®
There may be little chance to detect a meaningful effect even when it exists there. How
do we know if the number of our observations is reasonable? Sample size analysis can
answer.

6. APPLICATIONS

We have conceptually discussed what the statistical power is. Now, let us analyze
statistical power and sample size in several models using the SAS POWER procedure.

a. Power analysis of a one-sample T-test
Go back to the example mentioned in section four. Let me summarize the components of
the statistical power analysis first. The goal is to compute statistical power of information

about other components.

Table 2. Summary Information for a Statistical Power Analysis

Test Sample Size Test Size Power Effect Size Variation

T-test 44 .05 ? 2 (=22-20) 4

Let us use the SAS POWER procedure to conduct the same power analysis. You have to
specify the type of a test first. The ONESAMPLEMEANS statement in the following example
indicates the one-sample T-test.

PROC POWER;
ONESAMPLEMEANS
ALPHA=.05 SIDES=2
NULLM=20 MEAN=22
STDDEV=4
NTOTAL=44
POWER=. ;

RUN;

The ALPHA and SIDES options say a two-tailed test at the .05 significance level (test size).
The NULLM option specifies the mean value of the null hypothesis (Hy), while MEAN option
specifies hypothesized mean value (H,). The STDDEV and the NTOTAL options respectively

¥ Note that there is no clear cut-point of “too many” and “too few”, since it depends on models and
specifications. For instance, if a model has many parameters to be estimated, or if a model uses the
maximum likelihood estimation method, the model needs more observations than otherwise.
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indicate the standard deviation (variation) and sample size (N). Finally, the POWER option
ending with a period (.) asks SAS to compute the statistical power of this test. Take a
look at the SAS output.

The POWER Procedure
One-sample t Test for Mean

Fixed Scenario Elements

Distribution Normal
Method Exact
Number of Sides 2
Null Mean 20
Alpha 0.05
Mean 22
Standard Deviation 4
Total Sample Size 44

Computed Power
Power

0.900

SAS summarizes the information about core components, and then returns the value of
statistical power of the test.

b. Sample size analysis of a one-sample T-test

Let us change the scenario for a sample size analysis. Suppose we realize that some
observations have unreliable information due to measurement errors, and that the
population standard deviation is 3, not 4. Boss’s guideline requires the .01 significance
level in the upper one-tailed test and a lower power level .8. Now, we want to know the
minimum sample size that can satisfy these conditions.

Table 3. Summary Information for a Sample Size Analysis

Test Sample Size Test Size Power Effect Size Variation

T-test ? .01 .800 2 (=22-20) 3

Look at the following SAS POWER procedure and its output. Note that the u of the s1pes
option represents the upper one-tailed test with alternative value greater than the null
value (L means a lower one-sided test). The test size (significance level) and standard
deviation are corrected as requested. The nToTAL option has a period (.), while the power
option specifies the target level of statistical power.

PROC POWER;
ONESAMPLEMEANS
ALPHA=.01 SIDES=U
NULLM=20 MEAN=22
STDDEV=3
NTOTAL=.
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POWER=.8;
RUN;

The following output says that only 26 observations are needed to reach the targeting
power.

The POWER Procedure
One-sample t Test for Mean

Fixed Scenario Elements

Distribution Normal
Method Exact
Number of Sides u
Null Mean 20
Alpha 0.01
Mean 22
Standard Deviation 3
Nominal Power 0.8

Computed N Total

Actual N
Power Total
0.812 26

c. Power analysis of a paired-sample T-test

Let us move on to the paired sample T-test. The paireomeans statement and the TEST=DIFF
option are needed. The corr option is also required to specify the correlation coefficient
of the two paired variables, while the npAIRs option specifies the number of pairs. You
may list hypothesized numbers of pairs to see how statistical powers are sensitive to the
number of pairs.

PROC POWER;
PAIREDMEANS TEST=DIFF
ALPHA=.01 SIDES=2
MEANDIFF=3
STDDEV=3.5
CORR= .2
NPAIRS=20 30 40
POWER=. ;

RUN;

Look at the following SAS output that produces three statistical powers according to the
hypothesized sample sizes.

The POWER Procedure
Paired t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
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Method Exact
Number of Sides 2
Alpha 0.01

Mean Difference
Standard Deviation
Correlation

Null Difference

o w
o N O W

Computed Power

N
Index Pairs Power
1 20 0.575
2 30 0.821
3 40 0.936

d. Power analysis of a two independent samples T-test

The following example conducts a statistical power analysis for the two independent
samples T-test. The TWOSAMPLEMEANS statement indicates the two independent samples T-
test. The GROUPMEANS option species the means of two groups. The PLOT statement with
X=N option draws a plot of statistical powers as N in the X-axis changes.

PROC POWER;

TWOSAMPLEMEANS

ALPHA=.01 SIDES=2

GROUPMEANS= (2.79 4.12)

STDDEV= 1.5 2.0 2.5

NTOTAL=44

POWER=. ;

PLOT X=N MIN=20 MAX=100 KEY=BYCURVE (NUMBERS=OFF POS=INSET);
RUN;

You may list more than one hypothesized standard deviation in the STDDEV option in
order to know how statistical power of the test is sensitive to the standard deviations. The
output is as follows.

The POWER Procedure
Two-sample t Test for Mean Difference

Fixed Scenario Elements

Distribution Normal
Method Exact
Number of Sides 2
Alpha 0.01
Group 1 Mean 2.79
Group 2 Mean 4.12
Total Sample Size 44
Null Difference 0
Group 1 Weight 1
Group 2 Weight 1
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Computed Power

Std
Index Dev Power
1 1.5 0.598
2 2.0 0.324
3 2.5 0.189

A plot of statistical powers and sample sizes visualizes the sensitivity of a test. The

following plot shows that the power for standard deviation 1.5 is more sensitive to
sample size than those for larger standard deviations when N is less than 60.

Figure 4. A Plot of Statistical Power and Sample Size
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e. Power analysis of a one-way ANOVA

Now, consider a one-way ANOVA. The POWER procedure has the ONEWAYANOVA
statement for its analysis. Note that the NPERGROUP option specifies the number of
observations of a group, assuming balanced data.’

 When each group has the same number of observations, we call them balanced data; otherwise,
unbalanced data.
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PROC POWER;
ONEWAYANOVA TEST=OVERALL
ALPHA=.05
GROUPMEANS= (5 7 3 11)
STDDEV= 4 5 6
NPERGROUP= 10 15
POWER=. ;

RUN;

The above POWER procedure analyzes ANOVA with four different groups. Listing
several standard deviations and numbers of observations conducts sensitivity analysis of
the statistical power, producing the six combinations (=3 X 2).

The POWER Procedure
Overall F Test for One-Way ANOVA

Fixed Scenario Elements

Method Exact
Alpha 0.05
Group Means 57 3 11

Computed Power

Std N Per
Index Dev Group Power
1 4 10 0.972
2 4 15 0.999
3 5 10 0.858
4 5 15 0.972
5 6 10 0.696
6 6 15 0.886

The SAS GLMPOWER procedure also conducts a power analysis for one-way ANOVA.
Unlike the POWER procedure, this procedure requires an existing SAS data set. Like the
ANOVA procedure, the CLASS and the MODEL statements are required in this GLMPOWER
procedure. Note that the POWER is not an option, but a statement in this procedure.

PROC GLMPOWER DATA=power.car;
CLASS mode;
MODEL credits=mode;
POWER STDDEV=10
ALPHA=.01
NTOTAL=1000
POWER=. ;
RUN;

The output of the GLMPOWER procedure is similar to that of the POWER procedure.
The GLMPOWER Procedure

Fixed Scenario Elements
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Dependent Variable credits
Source mode
Alpha 0.01
Error Standard Deviation 10
Total Sample Size 1000
Test Degrees of Freedom 3
Error Degrees of Freedom 996

Computed Power
Power

0.856
f. Power analysis of a two-way ANOVA

In order to conduct power analysis of the two-way ANOVA in SAS, we need to use the
GLMPOWER procedure because the POWER procedure does not support this model. Again,
note that the CLASS and MODEL statements are requited.

PROC GLMPOWER DATA=power.car;
CLASS owncar sex;
MODEL credits= owncar sex;
POWER STDDEV=10
ALPHA=.01
NTOTAL= .
POWER=.8;
RUN;

Here is the output of the GLMPOWER procedure.
The GLMPOWER Procedure

Fixed Scenario Elements

Dependent Variable credits
Alpha 0.01
Error Standard Deviation 10
Nominal Power 0.8

Computed N Total

Test Actual
Index Source DF Error DF Power N Total
1 owncar 1 1854997 0.800 1855000
2 sex 1 31997 0.804 32000

7. SOFTWARE ISSUES

There are various software packages for statistical power and sample size analyses.
Among them are the POWER and GLMPOWER of SAS/STAT, SPSS SamplePower 2.0,
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and G*Power.'’ See the following for the list and review of statistical power analysis
software.

http://www.zoology.ubc.ca/~krebs/power.html

These software packages vary in scope, accuracy, flexibility, and interface (Thomas and
Krebs 1997). Some packages may support a test, while others may not. They may be
general purpose statistical software with such functions embedded (e.g., SAS) or
professional software with specialty in statistical power and/or sample size analysis (e.g.,
G*Power). Some software package like SAS/STAT Power and Sample Size (PSS) is not
stand-alone, but Web-based. Following Web site has a statistical power calculator than
enables you to compute power online.

http://calculators.stat.ucla.edu/powercalc/

Some software like G*Power runs under DOS mode. The majority of existing power
analysis software works in Microsoft Windows. Some are written for UNIX machine.
Most software uses the point-and-click interface, while others depend on command line.
They may adopt different algorithms so that their results may be different.

Figure 5 illustrates how to conduct the power analysis of a one-way ANOVA (Section 6.¢)
using G*Power. The result .9723 corresponds to the first case that has standard deviation
4 and 10 observations in each group.

Figure 5. Power Analysis of a one-way ANOVA in G*Power
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Figure 6 is a screenshot of SamplePower 2.0, replicating the power analysis of a one-
sample T-test (Section 6.a). The summary pop-up window wraps up the power analysis.

1 G¥Power is available on http://www.psycho.uni-duesseldorf.de/aap/projects/gpower/
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Figure 6. Power Analysis of a one-sample T-test in SamplePower 2.0
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