

# Sharing The Knowledge Module 9

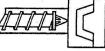
# Cooling and Freezing Polymers



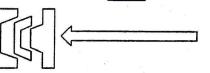
## Module 9 Cooling and Freezing Polymers

- Removing Heat
- Predicting Polymer Cooling
- Establishing Cooling Parameters

Participant's Notes:\_ STK 902


**GE Plastics** 

## Thermoplastics Processing


Heating



Forming



Cooling



Thermoplastic parts are produced by heating the resin, flowing and forming the melt, and then cooling the finished part.

| _ | 7 | 7   |
|---|---|-----|
| ٢ |   | -   |
| 1 |   | 1   |
| L | 5 | - 1 |
| • | V |     |

#### Introduction

#### Cooling & Freezing Polymers

The process of cooling and freezing polymers is critical to the molding process, affecting everything from manufacturing productivity to material performance. Cost effective, high quality part production depends on the ability of the converter to understand polymer cooling performance so he can process each material according to its own specific cooling requirements.

STK 901

#### Objectives:

At the end of this module, participant should be able to:

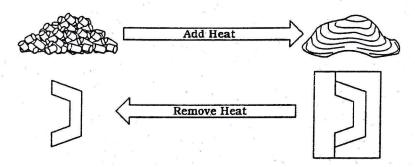
- Describe how a thermoplastic part is cooled.
- Describe how amorphous polymers and crystalline polymers respond differently during cooling.
- Describe the variables within each of the following factors when establishing cooling parameters for crystalline and amorphous resins: mold temperature, thermal conductivity and shrinkage.
- Describe the cooling parameters for a resin you are currently working with.

Thermoplastics are processed by heating the resin, flowing and forming the melt, and then cooling the finished part.

#### Thermoplastics Processing

The ability of thermoplastics to soften upon heating, form into a shape upon molding, and solidify into a part upon cooling is what makes them so unique. We talked about the heating, softening, and melting of polymers in Module 7 and we discussed flowing and forming in Module 8. This module examines the cooling and freezing of the polymer, discussing the phenomenon from both scientific and practical points of view.

STK 902


STK 904



**GE Plastics** 

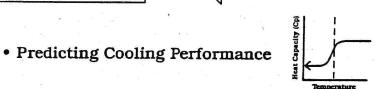
## Heating & Cooling

Heat is applied to the plastic to soften and melt it.



Heat is removed from the plastic to cool and freeze it.

9


Participant's Notes:



**GE Plastics** 

## Cooling & Freezing Polymers

Removing Heat



• Establishing Cooling Parameters



Heat is removed from the plastic to cool and freeze it.

#### Heating & Cooling

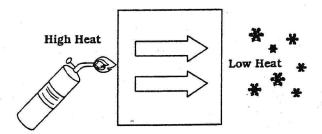
Heat energy is added to a polymer to cause it to soften or melt. So long as this heat energy is present in the melt, the polymer is able to flow. In order to cool and freeze the melt, the heat energy that was STK 903 put into the polymer must be removed.

## Removing Heat

There are three elements covered in this module.

#### Cooling & Freezing Polymers

This module examines polymer cooling performance and makes suggestions for establishing cooling parameters. But first let's discuss the cooling process, or the removal of heat from the polymer melt.


**STK 904** 

STK 905

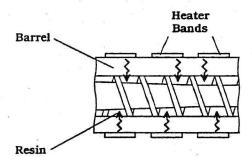


**GE Plastics** 

# Heat Transfer Heat Flow



Heat flows from an area of higher temperature to one of lower temperature.


9

Participant's Notes:

gg)

GE Plastics

## Heating



Polymer heating results from the transfer of heat from the higher temperature bands, to the barrel, to the lower temperature resin.

9

STK 906

Heat flows from higher temperature areas to lower temperature areas.

#### Heat Transfer

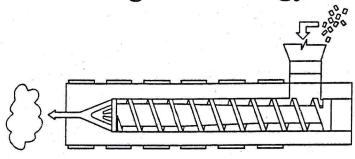
Heat flows from the body of a higher temperature to the body of a lower temperature. It is the temperature difference between the two bodies that determines the flow of heat: the greater the difference in temperature between the two bodies, the greater the rate of heat flow between them.

STK 905

#### Heating

Heat transfers from the heater bands to the resin.

In the conversion process, when the temperature of the heater bands is raised, the resulting heat flows from the bands into the lower temperature barrel, and eventually into the lower temperature resin.


**STK 906** 

**STK 907** 



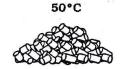
**GE Plastics** 

## Adding Heat Energy



Temperature of the polymer increases as it moves through the barrel.

9


Participant's Notes:

(gg)

**GE Plastics** 

STK 908

## **Heat Capacity**



X Calories



1 Gram

1 Gram

1 Cal / Gram / °C = 1 BTU / Lb. / °F

Heat Capacity  $(C_p)$  is the energy required to heat (in calories) one gram of material one degree centigrade.

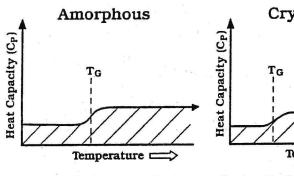
9

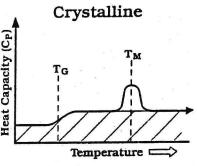
Temperature of the polymer increases as it moves through the barrel.

#### Adding Heat Energy

Electricity provides a constant source of energy so that heat continues to flow into the barrel to raise the temperature of the resin. The temperature of the resin increases from the back of the screw to the front of the screw due to the addition of electrical and mechanical heat energy.

STK 907


The heat capacity trace defines the energy required to raise the temperature of the polymer.


#### Heat Capacity

Heat capacity refers to the energy required to heat the material. It measures the number of calories it takes to raise one gram of material one degree centigrade. Units of heat capacity are measured in cals/gram/°C, or BTUs/lb/°F. A material's heat capacity is derived from information found in that material's heat capacity trace. STK 908

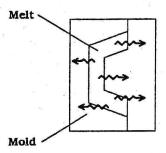


## The Heat Capacity Trace (On Heating)





The heat capacity trace on heating indicates how a polymer responds (takes in heat) as it is heated.


9

Participant's Notes:

(gg)

GE Plastics

## Cooling



Cooling results from the flow of heat from the higher temperature melt to the lower temperature mold.

9

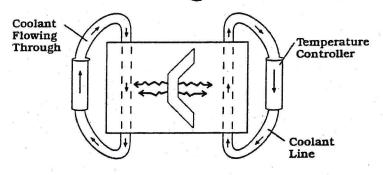
STK 910

The heat capacity trace (on heating) indicates how a polymer responds when heat is added.

#### The Heat Capacity Trace (On Heating)

The heat capacity trace on heating describes how a material responds as heat energy is applied, indicating the material's important physical transitions. As heat is applied the amorphous polymer goes through a glass transition and becomes soft and eventually flows. When a crystalline polymer is heated beyond its melt temperature it also flows.

**STK 909** 


In cooling, heat flows from the higher temperature melt to the lower temperature mold.

#### Cooling

While the polymer is in its melt state, pressure is applied to form it into a part. In order to get the polymer to remain in this new form, the material must be cooled. Cooling results when the "hot" polymer melt, enters the "cold" mold. Hot and cold are relative terms. The material is considered hot because it is hotter than the mold. And the mold is considered cold because it is cooler than the material. But actually the mold temperature can be as high as 350°F. Still, it is lower in temperature than the melt. So the heat from the higher temperature material flows into the lower temperature mold. STK 910



## Removing Heat



Heat flows from the melt into the mold and is carried away by the coolant.

9

Participant's Notes:

(ge)

**GE Plastics** 

## **Mold Temperature Control**

The temperature control lines maintain the temperature of the mold as it absorbs heat energy from the melt.

9

STK 912

M-PLA-0117-STK-MOD 9-12/89-00-12

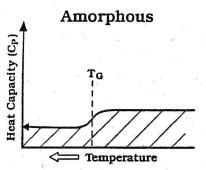
Heat must be removed from the tool.

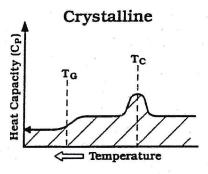
#### Removing Heat

The heat energy that leaves the melt and enters the mold is then carried away by the coolant flowing through the temperature control lines. If it weren't for the constant flow of coolant, the mold would retain the absorbed heat, its temperature would rise, and the rate of heat transfer would slow down. The coolant serves to carry the heat out of the tool, thus maintaining its lower temperature, and encouraging faster cooling.

STK 911

The temperature control lines maintain the temperature of the mold.


#### Mold Temperature Control


The mold temperature control lines maintain the temperature of the mold as it absorbs heat energy from the melt. Water or synthetic oil moved by a pump through the circulating passages in the mold carry away or introduce heat for maintaining the desired mold temperature.

STK 912



## Heat Capacity Trace (On Cooling)





The heat capacity trace on cooling indicates how a polymer responds (gives off heat) as it is cooled.

9


Participant's Notes:



**GE Plastics** 

## Cooling & Freezing Polymers

Removing Heat



• Establishing Cooling Parameters



STK 914

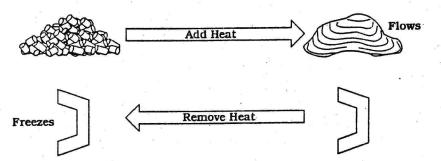
The heat capacity trace (on cooling) indicates how a polymer responds as heat is removed.

#### Heat Capacity Trace (On Cooling)

Just as the heat capacity trace on heating describes how a polymer responds as heat energy is applied, the heat capacity trace on cooling describes how a polymer responds as heat energy is removed. The heat capacity trace on cooling provides a blue print for polymer cooling and freezing.

STK 913

## Predicting Cooling Performance


#### Cooling & Freezing Polymers

The heat capacity trace on cooling provides important information on polymer cooling. It points out the important physical transitions the material goes through upon cooling, and it quantifies the amount of energy that must be removed before the material will go through these transitions and solidify into a part.

STK 914



## Polymer Cooling



The way a polymer responds upon cooling depends upon its structure and composition.

9

**GE Plastics** 

Participant's Notes:\_



STK 916

## **Polymer Structure**

Amorphous and crystalline polymers respond differently upon cooling:

- Amorphous polymers go through a glass transition.
- Crystalline polymers go through a crystallization process first, and then a glass transition.

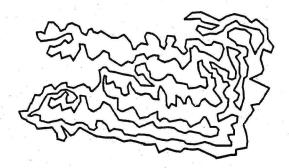
9

Each polymer responds differently on cooling.

Polymer Cooling

Just as polymers respond differently to heating depending on their composition and structure, they also respond differently to cooling depending on their chemical composition and molecular structure.

STK 915


Amorphous and crystalline polymers respond differently on cooling.

#### Polymer Structure

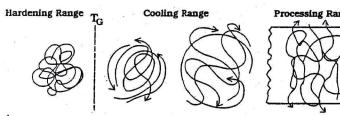
Polymers are comprised of many long chain-like molecules of repeating structural units. The way these molecular chains align themselves determines the structure of the polymer and ultimately has a great impact on the way the material responds to cooling. Because amorphous and crystalline polymers have very different structures, they also respond very differently to cooling: amorphous polymers go through a glass transition, while crystalline polymers go through a crystallization process first, then a glass transition. STK 916



## Amorphous Model



Amorphous polymers are comprised of a random entanglement of polymer chains.


9

Participant's Notes:



**GE Plastics** 

## Cooling of Amorphous Resins



Remove Heat

As heat is removed from an amorphous polymer, the molecular chains move closer together until the resin solidifies at its Glass Transition Temperature (T<sub>G</sub>).

9

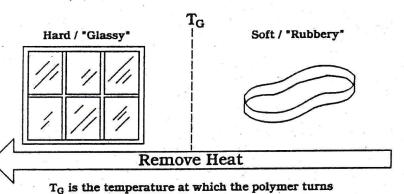
STK 918

| 30                   |  |  |
|----------------------|--|--|
| Participant's Notes: |  |  |
|                      |  |  |
|                      |  |  |

Amorphous polymers consist of a random entanglement of polymer chains. Amorphous Model

To be "amorphous" means literally, to be without structure. Amorphous polymers are characterized by the randomness of their entangled polymer chains. This drawing is a simple model depicting amorphous structure.

STK 917


In an amorphous resin the glass transition temperature is the key transition on cooling.

#### Cooling of Amorphous Resins

Above its glass transition temperature, the molecular chains that make up the amorphous polymer are loosely tangled and sliding back and forth making the polymer flow. As heat energy is removed from the polymer, these chains begin to slowly stop sliding back and forth, and instead start twisting, tangling, and collapsing in on themselves and their neighbors to form a tight structural "knot." It is below the glass transition temperature  $(T_{\rm G})$  that the material stops flowing and solidifies.



### Glass Transition Temperature (T<sub>G</sub>)



rubbery upon heating and glassy upon cooling.

Participant's Notes:

**GE Plastics** 

## Heat Capacity Trace (On Cooling): **Amorphous Resin**

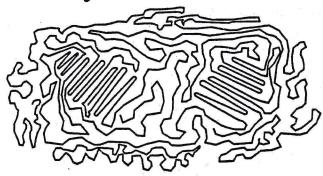


The heat capacity trace quantifies the amount of heat that must be removed on cooling.

9

STK 920

At T<sub>G</sub>the polymer turns rubbery upon heating and glassy upon cooling. Glass Transition Temperature  $(T_c)$ 


Every polymer has a glass transition temperature  $(T_G)$ . It is the temperature at which a material turns rubbery upon heating and glassy upon cooling. Above  $T_G$ , an amorphous material is soft, rubbery, and pliable. Below  $T_G$ , an amorphous polymer becomes hard, like glass, and structurally sound. The terms "rubbery" and "glassy" are actually referring to rubber and glass. Rubber has a very low glass transition temperature - below  $0^{\circ}F$  - so it is most often above its  $T_G$  and therefore rubbery and soft. Glass, on the other hand, has very high glass transition temperature - over  $1000^{\circ}F$  - so it is most often below its  $T_G$  and therefore glassy and rigid. STK 919

The heat capacity trace (on cooling) quantifies the amount of heat removed on cooling. Heat Capacity Trace (On Cooling)/Amorphous Resin

The shape of the heat capacity trace on cooling is the same for all amorphous polymers; however the actual coordinates change with each individual resin and resin grade. The trace quantifies how much heat energy must be removed to decrease the temperature of the polymer below its  $T_c$ . Notice that the curve is constant, then drops dramatically, then levels off again. This dramatic drop indicates the additional heat energy given off by the polymer to allow it to freeze. The material's  $T_c$  falls on that slope, where sufficient heat energy has been given off for the material to begin to solidify.



## Crystalline Model

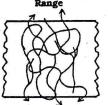


Crystalline Polymers are comprised of a random entanglement of polymer chains with areas of order.

9

Participant's Notes:




GE Plastics

## Cooling of Crystalline Resins

Crystallizing Range



Processing



#### Remove Heat

As heat is removed from a crystalline polymer, the molecular chains move closer together, align themselves, and begin to form crystals.

9

STK 922

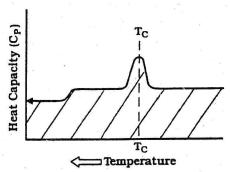
Crystalline polymers consist of random entanglement of polymer chains with areas of order called crystal regions.

#### Crystalline Model

Crystalline polymers respond differently than amorphous polymers to cooling due to their structural difference. Whereas amorphous polymers are comprised of a random mass of molecular chains, crystalline polymers contain areas of order in which their chains lie side-by-side in a regular fashion. These regions of order where the chains line up and lie closely together are referred to as crystallinity. This drawing is a simple model depicting crystalline structure.

STK 921

As heat is removed from a crystalline polymer, the molecular chains move closer together, align themselves, and begin to form crystals.


#### Cooling of Crystalline Resins

In the melt state, a crystalline polymer is above its melting temperature and actually amorphous. Its molecular chains are flowing in a random fashion. As heat is removed, the polymer chains begin to slow down and move closer together until there is no longer sufficient heat energy to keep them in motion. As the chains move closer together, they begin realigning themselves into tight, orderly crystals.

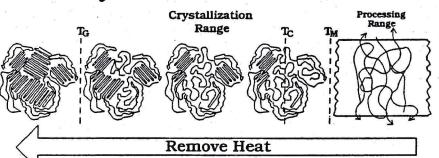
STK 922



## Crystallization Temperature



The Crystallization Temperature  $(T_C)$  indicates the temperature at which the polymer starts building crystallinity.


9

Participant's Notes:



**GE Plastics** 

## **Crystallization Process**



A polymer will build crystallinity below  $T_M$  and above  $T_G$  and is most rapid at  $T_C$ .

9

STK 924

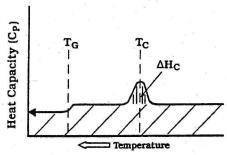
Crystalline polymers build crystallinity at the crystallization temperature. Crystallization Temperature

The crystallization temperature is the temperature at which rapid crystallization occurs on cooling. Crystallization temperature ( $T_c$ ) is higher than glass transition temperature yet lower than melting temperature. At  $T_c$ , there is not enough heat energy to keep the crystalline material flowing, but there is enough heat energy available to allow the resin's molecular chains to begin lining up in an orderly fashion. Below  $T_c$ , however, there is insufficient heat in the polymer to allow the molecular chains to move. Below  $T_c$  the polymer is frozen.

Crystalline polymers will build crystallinity between  $T_M$  and  $T_G$ .

#### Crystallization Process

A crystalline material will build crystallinity rapidly at  $T_c$  and continue to crystallize until it cools below  $T_c$ . Crystallinity is rate dependent: the more slowly the polymer cools, the greater the degree of crystallinity; the more quickly the polymer cools, the lesser the degree of crystallinity. This is why cycle time is so crucial when molding crystalline resins. From  $T_m$  to  $T_c$  is the polymer's crystallization range. Each crystalline polymer has its own crystallization range; some materials crystallize more quickly than others.


STK 924

STK 926

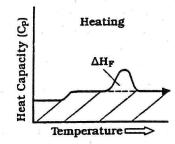


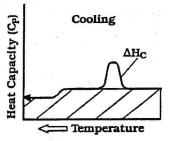
**GE Plastics** 

## Heat Capacity Trace (On Cooling): Crystalline Resin



The Heat Capacity Trace (On Cooling) for a Crystalline resin also indicates the Heat of Crystallization ( $\Delta H_C$ ).


9


Participant's Notes:

GE)

GE Plastics

### Heat of Crystallization (ΔH<sub>C</sub>)





The Heat of Crystallization ( $\Delta H_C$ ) is the amount of energy that is given off as the polymer builds crystallinity on cooling.

ç

The heat capacity trace (on cooling) for a crystalline resin indicates the heat of crystallization.

#### Heat Capacity Trace (On Cooling)/Crystalline Resin

The heat capacity trace (on cooling) for a crystalline resin indicates how much cooling is needed to lower the temperature of the polymer. The heat of crystallization ( $\Delta H_c$ ) indicates the amount of heat that is given off as crystals form. STK 925

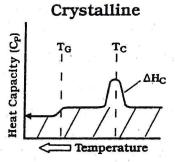
The heat of crystallinity is the amount of energy that is given off as the polymer builds crystallinity.

#### Heat of Crystallization ( $\triangle Hc$ )

The polymer's heat capacity trace on cooling quantifies the amount of energy that must be given off for crystallization. You may recall it takes additional energy, the heat of fusion ( $\Delta H_f$ ), before the crystals in the crystalline polymer will melt. During cooling, all that additional energy must be released for the polymer to build crystallinity. This additional energy is the polymer's heat of crystallization ( $\Delta H_c$ ). It is the amount of energy that is given off as the polymer builds crystallinity.

STK 928




**GE Plastics** 

## Polymer Cooling Requirements

Amorphous

T<sub>G</sub>

I



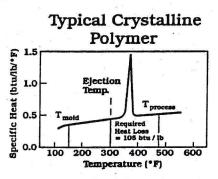
Specific cooling requirements are established from values derived from each polymer's own heat capacity trace (on cooling).

9

Participant's Notes:

(ge)

GE Plastics


## Cooling Requirements

Typical Amorphous
Polymer

6. 0.6 Ejection Toprocess
Temp.

7 Toprocess
Required Heat Loss
= 150 btu / lb

100 200 300 400 500 600
Temperature (\*F)



The total energy that must be removed before ejection can be calculated from the polymer's heat capacity trace (on cooling).

9

#### Summary

Consult the heat capacity trace to determine a material's cooling requirements.

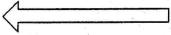
The actual heat and cooling requirements are calculated from the heat capacity trace.

#### Polymer Cooling Requirements

General cooling characteristics are determined by the structure of the material: amorphous or crystalline. But each resin has its own specific cooling behavior due to its own particular structure and composition. Specific cooling requirements are determined by values derived from each polymer's heat capacity trace on cooling. Certain amorphous polymers cool more quickly than others. This information can be determined by comparing each polymer's heat capacity trace. And certain crystalline resins take longer to crystallize than others. Again, this information can be determined by comparing each polymer's heat of crystallization found on its heat capacity trace.

STK 927

#### Cooling Requirements


A material's heat capacity trace on cooling allows you to calculate the total energy that must be removed before ejecting the part. To calculate the cooling requirement for an amorphous polymer, you need to identify the processing and ejection temperatures, then calculate the area under the trace between those two temperatures. For example, this typical amorphous polymer has a processing temperature of 560°F and an ejection temperature of 225°F. This change in temperature can be multiplied by the polymer's heat capacity to determine the total amount of heat energy that must be removed from the polymer before ejection. The amount of energy that must be removed from the polymer for it to drop from 560°F to 225°F is 150 BTUs/lb.

To calculate the cooling requirement for a crystalline polymer you must take into account the heat of crystallization. As with the amorphous polymer, you must first identify the material's processing and ejection temperatures and calculate the area under the trace between these two temperatures. Then you must add the polymer's heat of crystallization to get the total cooling requirement. For example, this typical crystalline polymer has a processing temperature of 480°F and an ejection temperature of 300°F. The amount of energy that must be removed from the polymer for it to drop from 480°F to 300°F is 92 BTUs/lb. But the material must also give off an additional 13 BTUs/lb for maximum crystallinity. So the total cooling requirement is 105 BTUs/lb.



## **Cooling & Freezing Polymers**

• Removing Heat



• Predicting Cooling Performance



• Establishing Cooling Parameters



**GE Plastics** 

Participant's Notes:

gg gg STK 930

## **Cooling Parameters**

- Mold Temperature
- Thermal Conductivity

9

## **Cooling Parameters**

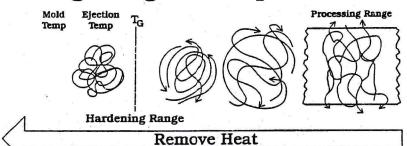
Establishing cooling parameters.

#### Cooling & Freezing Polymers

Having understood how to predict cooling performance from the heat capacity trace (on cooling) we can now use this information to establish cooling parameters.

STK 929

#### Cooling Parameters


Two cooling parameters.

The two important parameters in cooling are the temperature of the mold and the thermal conductivity of the melt and the mold.

STK 930



## Cooling Range: Amorphous Resin



• The mold temperature must be below TG to solidify the part.

9

**GE Plastics** 

Participant's Notes:



STK 932

#### Cold Molds

• Difficult Fill

- Higher Injection Pressure
- Higher Melt Temperature
- Difficult Ejection (Ejection Stress)
- Higher Molded-in Stress
- Tendency for Voids in Thicker Sections

#### **Heated Molds**

- Easier Fill
- Lower Injection Pressure
- Lower Melt Temperature
- Easier Ejection (Lower Ejection Stress)
- Lower Molded-in Stress
- Tendency for Sinks in Thicker Sections
- Improved Surface Finish

ç

| Participant's Notes: |  | H 11 |  |
|----------------------|--|------|--|
| 1                    |  | *    |  |
|                      |  |      |  |
|                      |  |      |  |

The mold temperature must be below  $T_G$  to solidify the part.

Cooling Range: Amorphous Resin

Amorphous polymers go through a glass transition upon cooling, becoming solid below  $T_{\rm G}$ . Above  $T_{\rm G}$ , the polymer is still flowing. Therefore the temperature of the mold must be below  $T_{\rm G}$  to allow the part to solidify. From the heat capacity trace on cooling, the converter can determine how much heat must be removed to drop the temperature below  $T_{\rm G}$ . The polymer's ejection temperature is set just below  $T_{\rm G}$  to allow for sufficient cooling and minimum cycle time.

STK 931

#### Cold Molds/Heated Molds

Cold molds mean faster cooling and therefore faster cycle time, but cold molds present certain disadvantages to the converter. Cold molds are more difficult to fill and therefore require higher injection pressure and melt temperature. It is more difficult to eject from cold molds, because the part tends to shrink tightly to a cold mold upon cooling. This causes ejection stress. Cold molds can also cause higher molded-in stress and a tendency for voids in thick sections of the part.

Heated molds, on the other hand, are easier to fill. They require lower injection pressure and melt temperature. Ejection is easier thus minimizing ejection stress. Parts tend to have lower molded-in stress. Still, heated molds can tend to cause sinks in thicker sections. But the part itself, has an improved surface finish. Ultimately, a heated mold is preferable to a cold mold. But cycle time is the overriding consideration when determining mold temperature.

**STK 932** 

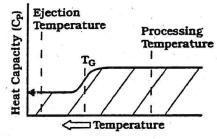
Heated molds provide for easier processing than cold molds.



## Thermal Conductivity

- Thermal Conductivity indicates the rate at which heat will be transferred through the resin.
- Plastics with higher Thermal Conductivity lose heat faster.

9


**GE Plastics** 

Participant's Notes:



STK 934

## Part Cooling: Amorphous Resin



- The cooling time depends on the amount of heat that must be removed and the rate at which it can be removed.
- The temperature of the polymer must be reduced from its processing temperature to its ejection temperature.

5

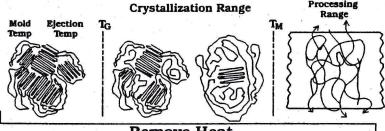
Plastics with higher thermal conductivity lose heat faster.

#### Thermal Conductivity

It is the thermal conductivity of the material that determines the rate at which the heat can be removed. It is a measure of the ability of the resin to transfer heat. Plastics with higher thermal conductivity lose heat faster and therefore cool more quickly. Plastics with lower thermal conductivity lose heat more slowly, and therefore cool more slowly.

STK 933

Amorphous resins must be below  $T_c$ .


#### Part Cooling: Amorphous Resin

After entering the mold, the material must be reduced from its processing temperature to its ejection temperature. The amount of time it takes to reach its ejection temperature depends on the amount of heat that must be removed and the rate at which it can be removed. Just as the amount of energy that must be removed depends on the resin, so does the rate of removal depend on the resin being molded.

STK 934



## **Crystallization Cooling Range**



- Remove Heat
- The mold temperature determines the cooling time and therefore the degree of crystallinity.
- Cooling through the crystallization range too quickly will result in reduced crystallinity (quenching).

9

Participant's Notes:



**GE Plastics** 

STK 936

## Degree of Crystallinity

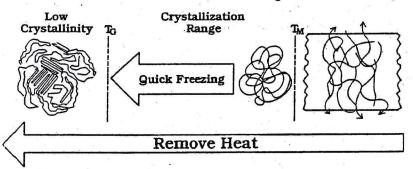
- The colder the mold the faster the cooling the lesser the degree of crystallinity.
- The hotter the mold the slower the cooling the greater the degree of crystallinity.

•

Degree of crystallinity is determined by rate of cooling. Crystallization Cooling Range

Crystalline cooling is more difficult to predict than amorphous cooling due to the process of crystallization. As with the amorphous resin, the rate at which the polymer will cool depends on its thermal conductivity. But with crystalline polymers, the need to allow the polymer to crystallize presents its own problems. If cooled too quickly, the crystalline polymer may cool through its crystallization range without building crystallinity. This is called quenching the polymer. Cold molds can cause quenching and insufficient polymer crystallinity, while heated molds tend to allow more crystallinity and a reduced chance of quenching.

STK 935


The degree of crystallinity is related to the mold temperature.

#### Degree of Crystallinity

As stated earlier, crystallinity is rate dependent: so the colder the mold, the more quickly the crystalline polymer cools, and the lesser the degree of crystallinity. The hotter the mold, the more slowly the crystalline polymer cools, and the greater the degree of crystallinity.

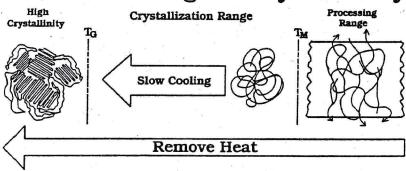


## Cold Mold → Lower Crystallinity



A cold mold freezes the polymer quickly not giving it a chance to fully crystallize. (Quenching)

9


Participant's Notes:\_\_\_

STK 938



**GE Plastics** 

# Hot Mold → Higher Crystallinity



A hotter mold cools the polymer more slowly, resulting in more crystallinity.

9

A cold mold doesn't allow the crystalline polymer to fully crystallize (quenching).

#### Cold Mold/Lower Crystallinity

Heat flows from the body of a higher temperature to the body of a lower temperature. The rate of heat flow depends on the difference in the temperatures of the two bodies: the greater the difference, the faster the flow of heat. So it follows that a cold mold will cause the polymer to cool more quickly. But if the mold is too cold, it could cause the crystalline polymer to cool too quickly, freezing it before it has a chance to fully crystallize.

STK 937

A hotter mold cools the polymer more slowly allowing it to build more crystallinity.

#### Hot Mold/Higher Crystallinity

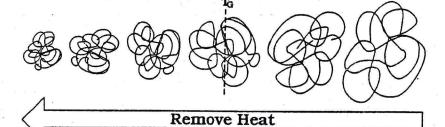
If the mold is heated, the polymer cools more slowly and the crystalline polymer has time to build more crystallinity.



# **Optimum Crystallinity**

Optimum Crystallinity provides greater predictability in terms of:

- Chemical Resistance
- Dimensional Stability
- Heat Deflection Temperature (HDT)
- In-mold Shrinkage


5

Participant's Notes:

STK 940

GE Plastics

Shrinkage



Shrinkage is the volume reduction caused by the decrease in the amount of space between polymer chains upon cooling.

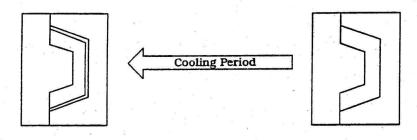
ç

Optimum crystallinity provides optimum part performance.

Shrinkage is the volume reduction caused by the decrease in the amount of space between polymer chains upon cooling.

#### Optimum Crystallinity

Crystalline polymers are often chosen for performance characteristics, such as chemical resistance, that are directly related to their crystallinity. Optimizing crystallinity will optimize part performance. In addition, optimum crystallinity provides greater dimensional stability due to the reduced chance of post-mold shrinkage. Higher crystallinity results in higher in-mold shrinkage. There is less chance for shrinkage in application, providing for greater dimensional stability and a higher heat deflection temperature (HDT). STK 939


#### Shrinkage

Cooling a polymer melt causes a volume reduction referred to as shrinkage. During processing, heat is added to a polymer creating enough space between the molecular chains to allow them to slide past each other and flow. This space causes an increase in the volume of the material in its melt state. Upon cooling, the molecular chains slow down and move back together again, causing a reduction in the space between the molecules and therefore a reduction in the volume of the material. This kind of shrinkage occurs in both amorphous and crystalline polymers.

STK 940



## Shrinkage/Unfilled Amorphous Resin



Unfilled amorphous polymers tend to exhibit isotropic shrinkage.

ç

Participant's Notes:



**GE Plastics** 

STK 942

## Resin Shrinkage Values

Each polymer has its own shrinkage values that must be accommodated for when designing the tool.

These values can be affected by:

• Resin Type

- Cavity Pressure
- Direction of Flow
- Fillers
- Part Wall Thickness
- Melt Temperature
- Flow Length

9

| Participant's Notes: |   |  | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|----------------------|---|--|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 9                    | 0 |  |                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t 10 |
|                      |   |  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|                      |   |  |                                        | <br>Name of Street or other College Colleg |      |

Amorphous polymers tend to shrink evenly in all directions. Shrinkage/Unfilled Amorphous Resin

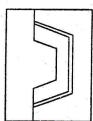
Shrinkage in an amorphous polymer is normally consistent and therefore easier to predict and accommodate for in tooling. Unfilled amorphous materials tend to shrink the same in all directions. This type of even shrinkage is called isotropic shrinkage.

**STK 941** 

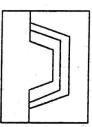
Each polymer has its own shrinkage value that must be accommodated for when designing the tool.

#### Resin Shrinkage Values

Each polymer has its own shrinkage values that are reported on the material data sheet. These values can be affected by such factors as the particular grade of resin being processed, whether it contains fillers, or the direction of flow. Filled materials, for example, shrink more in the cross flow and less in the flow direction. This kind of uneven shrinkage is called anisotropic shrinkage. Consequently, the tool must be designed to accommodate for shrinkage when molding a reinforced polymer. Resin shrinkage values can also be affected by factors that affect the rate of cooling such as the part wall thickness, the flow length, the cavity pressure, or the temperature of the melt.


**STK 943** 




**GE Plastics** 

# **Shrinkage Comparison**

Amorphous

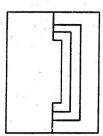


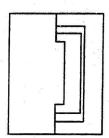
Crystalline



Crystalline polymers shrink more than amorphous polymers due to the additional volume reduction caused by crystallization.

9


Participant's Notes:




**GE Plastics** 

## Wall Thickness

Thicker wall sections take longer to cool, and therefore shrink more.





Wall thickness affects the amount of shrinkage in amorphous and crystalline resins.

.

| Participant's Notes: |    |   |   |
|----------------------|----|---|---|
|                      | 18 | E | × |
|                      | 2  |   |   |
| 2                    |    |   |   |

Crystalline polymers shrink more than amorphous polymers.

Shrinkage Comparison

Crystalline materials tend to shrink more than amorphous materials due to the presence of crystallinity. In the crystalline regions, the molecules lie very close together in an orderly fashion. The polymer chains are packed more tightly together in these regions than the chains in an amorphous structure. Consequently there is less space between the molecules causing an additional reduction in volume when the material cools from a fluid state to a solid. If molding the same part, the tool cavity for a crystalline material will be slightly larger than the cavity for an amorphous material. Also, shrinkage in a crystalline polymer often has a greater range making it more difficult to accurately predict.

STK 943

Shrinkage is affected by wall thickness.

#### Wall Thickness

The thickness of the part wall also affects the rate of cooling and therefore the amount of shrinkage: the thicker the wall section, the longer it takes to cool, and the higher the amount of shrinkage. This is true in both amorphous and crystalline resins. When processing crystalline polymers, thicker wall sections take longer to cool, creating more crystallinity and therefore more shrinkage. When processing amorphous polymers, thicker wall sections result in more shrinkage as the molecules have more time to move closer together. Maximizing in-mold shrinkage minimizes the chance of post-mold distortion.

STK 944



### Non-uniform Walls

- Non-uniform wall sections cause uneven cooling resulting in uneven shrinkage.
- Uneven shrinkage can result in high molded-in stress, warpage, voids, and sink marks.

5

| Participant's Notes: | ·                                                                                                              |  |
|----------------------|----------------------------------------------------------------------------------------------------------------|--|
|                      |                                                                                                                |  |
|                      | SODS (LISELLE ON A THEOLOGICAL CONTEST HAVE COURSED IN THE SHE OF CETTER HAVE THE HAVE THE HAVE THE SHE WAY IN |  |
|                      |                                                                                                                |  |



GE Plastics

Understanding Cooling and Freezing Polymers

-

STK 946

Uniform wall thickness is important to avoid problems.

#### Non-uniform Walls

When a part contains varying wall thickness, thinner sections will cool more quickly than thicker sections. Once the thinner section has cooled, it freezes solid thus hindering the adjacent thicker section, which is still cooling, from shrinking freely. The result is a high degree of molded-in stress where the thin and thick sections meet. It is the stress at the juncture of high and low shrinkage areas that may cause a part to warp.

Uneven shrinkage does not always result in high stress. It may instead result in a void. When the already cooled section will not yield to the still cooling thicker section, the shrinking action may create a void.

Or the shrinking action in the still cooling thick section may compensate by creating a sink mark on the surface of the part. A sink mark is nothing more than a void on the surface.

Uniform wall thickness promotes even cooling and even shrinkage thus reducing such potential defects as molded-in stress, warpage, voids, or sink marks.

STK 945

## Summary and Performance Feedback

#### Understanding Cooling & Freezing

The cooling and freezing of the polymer is as complicated as the heating, softening, melting, flowing, and forming of the material. And it is just as important that it be understood completely and carried out correctly. By using the heat capacity trace on cooling as a blue print, the toolmaker and the converter can be certain that they are manufacturing the best possible parts in terms of such things as crystallinity, stress, and surface appearance. And they can be certain they are processing parts efficiently in terms of expended energy, part defects, and cycle time.

STK 946



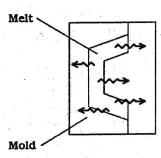
How is a thermoplastic part cooled?

9

**GE Plastics** 

Participant's Notes:




STK 948

How do amorphous and crystalline polymers respond differently upon cooling?

9



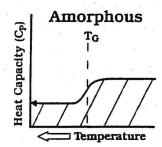
## Cooling

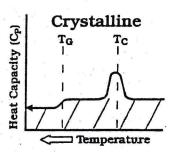


Cooling results from the flow of heat from the higher temperature melt to the lower temperature mold.

9

.


STK 950


# E)

Participant's Notes:

**GE Plastics** 

## Polymer Cooling Requirements





Amorphous polymers go through a glass transition while crystalline polymers go through a crystallization process, then a glass transition.

9



How does mold temperature and rate of cooling affect a crystalline polymer?

9

| Participant's Notes: |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |



GE Plastics

STK 952

# Degree of Crystallinity

- The colder the mold the faster the cooling the lesser the degree of crystallinity.
- The hotter the mold the slower the cooling the greater the degree of crystallinity.

9



# Module 10

# Design & Performance

- Processing
- Design
- Materials

9

| Participant's Notes: |   |  |
|----------------------|---|--|
|                      | 7 |  |
|                      |   |  |



# Module 9

## Performance Feedback

- 1. Describe how a thermoplastic part is cooled.
- 2. Describe how amorphous polymers and crystalline polymers respond differently during cooling.
- 3. Describe the variables within each of the following factors when establishing cooling parameters for crystalline and amorphous resins: mold temerature, cooling period and shrinkage.
- 4. Describe the cooling parameters for a resin you are currently working with.