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This paper discusses how to run 2k experiments for process improvement when there is one hard-

to-change factor. The paper studies the different ways of running these experiments and gives practical

recommendations. It shows how to block designs to get small prediction variance and low cost. It presents

an algorithm to allow the selection of efficient blocking relations, in 2k designs, where there is one hard-to-

change factor and tabulates the results for 23 to 27 designs, in various block sizes. It presents methods for

calculating the prediction variance and G-efficiency when there are hard-to-change factors. The calculations

are demonstrated by applying them to 2k designs, and results are tabulated for various block sizes. We

show that optimally blocked split-plot designs dominate randomized designs. A blocked split-plot design is

both less expensive to run, because it requires fewer resets of the hard-to-change factor, and more precise,

as it gives a lower variance of prediction than a completely randomized design.
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D
ESIGNED experiments are an important com-
ponent of process-improvement and quality-

enhancement projects. There are many practical sit-
uations where one or more factors in the experiment
are hard, i.e., difficult, expensive, or time consum-
ing to change. Oven temperature, line set-up, and
formula change are typically hard-to-change factors.
In practice, it is often observed that when successive
runs have the same level of the hard- or expensive-
to-change factor, that factor is not independently re-
set for each run. Therefore, a completely randomized
design (CRD) is not obtained (Ju and Lucas (2002),
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Ganju and Lucas (1997, 1999, 2005), and Webb et
al. (2004)). To get a CRD, the design must be run
in a random order and each factor must be reset on
each run. Running the design in a random order does
not give a CRD. The design is a blocked design with
the blocks determined at random and there are two
or more error terms. Running the design in orthog-
onal (or near orthogonal) blocks gives a better de-
sign. This paper shows that more blocked designs
and fewer CRDs should be run because the blocked
design will be more cost efficient and more precise
than a CRD.

Ganju and Lucas studied the performance of stan-
dard statistical tests when there is a hard-to-change
factor. Their 1997 paper showed that the tests on
easy-to-change factors are correct or nearly correct
over all randomizations. However, the tests on hard-
to-change factors can be far off. Their 1999 paper
showed that, when the number of parameters in the
model is not a small fraction of the design points,
then split plotting is difficult to detect after the fact.
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Their 2005 paper showed that the correctness of tests
for easy-to-change factors over all run orders is a
small consolation because, for many run orders, the
tests can be far off.

Anbari (1993, 2004) and Anbari and Lucas (1994)
showed that, when there is a hard-to-change factor,
the design should be blocked on the hard-to-change
factor. They showed that one can get designs with
efficiencies greater than 100% relative to a CRD and
that these designs will also be more cost effective
than designs run in a random order. Designs having
efficiencies greater than 100% relative to a CRD are
called “super-efficient” designs.

This paper shows that 2k experiments should be
designed, run, and analyzed differently from the cur-
rent practice of running the designs in a random or-
der. We determine the prediction variance and cal-
culate the efficiency for various ways of running the
experiment. We show how proper blocking achieves
efficiencies greater than 100% relative to a CRD.
We discuss the cost of running the experiment and
show practical block patterns that have higher G-
efficiencies and higher cost efficiencies than designs
run in a random order.

Some implications of this paper that can be con-
sidered a general set of guidelines in design of exper-
iments are:

• The experimenter should pay close attention to
the way the experiment will actually be run, to
achieve maximum efficiency.

• Algorithmic (computer-generated) designs can
give the answer to the wrong design questions.

• A Taguchi crossed array is sometimes the most
cost-effective way to run an experiment (but defi-
nitely not always the way).

• Journal editors should require more details about
how experiments are conducted.

• It is appropriate to conduct more split-plot exper-
iments and fewer randomized experiments.

Hard-to-Change Factors

An important principle in the design of experi-
ments is randomization, which guards against bias
due to trends or cycles in the experiment. In a CRD,
all factors that require resetting are reset for each
experimental run.

However, in many designed experiments, random-
ization can be expensive or unfeasible because some

factors in the experiment are hard to change. Exam-
ples of the presence of a hard-to-change factor can be
noted in changing the temperature of the oven used
to bake components (Wortham and Smith (1959)),
changing the setup of the system for measuring the
distance of the astronomical unit (Youden (1972)),
changing the temperature of the drying furnace in
the production of laminate boards (Taguchi (1984,
1987)), changing the temperature of a mold in a
chemical industrial experiment (Lucas and Ju (1992),
Webb et al. (2004)), and changing the powder coat-
ing formula (O’Neill and DeBrunce (2001)). In such
cases, the level of the hard-to-change factors may not
be reset independently whenever two or more succes-
sive runs occur with the same level of those factors
(Ju and Lucas (2002)). An experiment run in a ran-
dom order, but with one or more factors not reset
for each run, will be referred to as a “random run or-
der design” (Ju (1992), Ganju and Lucas (2005)) or
a “randomized not reset (RNR) experiment” (Webb
et al. (2004)). If the analysis is made assuming that
complete randomization had occurred when in fact
it did not, the analysis can be erroneous (Ganju and
Lucas (1997), Webb et al. (2004)). Goos et al. (2006)
discussed response surface experiments when some of
the factors are not reset independently and pointed
out that the result is a split-plot experimental de-
sign, and the observations in the experiment are, in
many cases, correlated.

Motivating Examples

We give two examples of blocking with split-plot
experiments when there is one hard-to-change factor
(factor A). Example 1, 24 main effects and two-factor
interactions model: Ju and Lucas (2002) discussed
this design and showed that a 4-block design using
the defining relationship I = A = BCD = ABCD is
super efficient (also see Table 4). Here we describe an
experimental program that used this design. In the
production of a man-made fiber, a finish is usually
added to the fiber at the last phase of the produc-
tion process. The finish makes it easier to weave the
fabric. After the weaving, it is often desirable to re-
move the finish to enhance the performance of the
woven fabric. Our experimental product is a tightly
woven industrial fabric that can be used in protec-
tive clothing. Residual finish can lubricate a pro-
jectile that is fired at the wearer of the protective
clothing so the finish must be removed. Because the
solvent emissions from the current dry-cleaning pro-
cess were environmentally unacceptable, an alterna-
tive finish-removal process was desired. We describe
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TABLE 1. Finish Removal Results (JMP 6)

Data List 24 Imbedded Design

Run
order Block Temp. Surf. Base Time Finish

1 1 −1 −1 −1 1 11.7
2 1 −1 −1 1 −1 11.4
3 1 −1 1 1 1 11.4
4 1 −1 1 −1 −1 12.6
5 2 1 −1 −1 −1 14.4
6 2 1 −1 1 1 14.7
7 2 1 1 1 −1 15.5
8 2 1 1 −1 1 12.7
9 3 1 −1 −1 1 16.5

10 3 1 −1 1 −1 13.8
11 3 1 1 −1 −1 16.6
12 3 1 1 1 1 17.6
13 4 −1 −1 1 1 12.3
14 4 −1 −1 −1 −1 11.1
15 4 −1 1 1 −1 12.8
16 4 −1 1 −1 1 9.9

the lab-scale experimental program that used three
experiments to demonstrate the feasibility of remov-
ing the finish by washing the fabric. The first experi-
ment used a 24 experiment in 4 blocks plus additional
experimental points. The essential results of the ex-
periment are seen in the 24 imbedded design that
we show as Table 1. The four factors are surfactant
type, an additive (base) to reduce the acidity of the
wash, wash time, and wash temperature (the hard-
to-change factor). For proprietary reasons, the lev-
els are coded and a linear transformation is applied
to the response (residual finish) that was measured
on 3′′ by 10′′ swaths of fabric. Figure 1 and Table
2 show the results of a JMP 6 analysis. The half-
normal plot Figure 1 shows temperature away from
the straight line and also shows the sideways “Z”
shape that is typical of split-plot experiments. The
temperature regression coefficient is the largest effect
but it is in the “wrong” direction with more finish
remaining with the hotter wash. The Table 2 mixed-
model analysis for a main effects plus two-factor in-
teractions model clearly shows two error terms but
no significant factor effects (at the 0.05 level). The
temperature effect (p = 0.0589) is not quite signif-
icant. However, in all runs, the residual finish is an
order of magnitude higher than the level achieved
by dry cleaning, so the feasibility of using washing
to replace dry cleaning is not demonstrated. A sec-
ond experiment that changed some factors and levels

FIGURE 1. Normal Probability Plot.

gave similar results; the residual finish was still too
high. The third experiment that washed the fibers
from the swaths (after the swaths were “unwoven”)
was successful in reducing the residual finish to a
low level. This completed the lab-scale program and
demonstrated that washing can remove the finish.
The lab-scale program also identified problems that
must be addressed before washing is a feasible com-
mercial process. Because of the tightly woven fabric,
the commercial wash must use a strong force for the
surfactant and the rinse to enable them to remove
the finish.

Example 2, 24 main effects model: We show that
an excellent blocking procedure is to use 8 blocks
with defining generator I = A = BD = CD, so BC,
ABC, ABD, ACD are also confounded with blocks.
The 8-block experiment has fewer changes of the
hard-to-change factor than a CRD (8 versus 16), and
we also show (in Table 4) that it has a smaller maxi-
mum variance of prediction (and higher G-efficiency)
over the experimental region than a CRD. Because
the G-efficiency of the CRD is 100%, the blocked de-
sign is “super efficient” relative to the CRD. This
experiment also has a higher G-efficiency and fewer
expected changes than an RNR experiment that uses
a random run order but does not reset the hard-to-
change factor when successive runs have the same
level.

Design Efficiencies

Kiefer (1959, 1961, and other papers) and oth-
ers proposed the use of several optimality criteria
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TABLE 2. Finish Removal Analysis Results (JMP 6 output)

Response Finish

Summary of fit

R square 0.961455
R square adj 0.884366
Root mean square error 0.913327
Mean of response 13.4375
Observations (or sum wgts) 16

Parameter estimates

Term Estimate Std error DFDen t ratio Prob > |t|

Intercept 13.4375 0.45432 2 29.58 0.0011
Temperature 1.7875 0.45432 2 3.93 0.0589
Surfactant 0.2 0.228332 3 0.88 0.4456
Base 0.25 0.228332 3 1.09 0.3536
Time −0.0875 0.228332 3 −0.38 0.7271
Temperature ∗ surfactant 0.175 0.228332 3 0.77 0.4992
Temperature ∗ base −0.075 0.228332 3 −0.33 0.7641
Temperature ∗ time 0.2375 0.228332 3 1.04 0.3747
Surfactant ∗ base 0.4375 0.228332 3 1.92 0.1512
Surfactant ∗ time −0.65 0.228332 3 −2.85 0.0653
Base ∗ time 0.4 0.228332 3 1.75 0.1781

REML variance component estimates

Var Pct of
Random effect Var ratio component Std error 95% lower 95% upper total

Block 0.7397602 0.6170833 0.8430004 −1.035198 2.2693642 42.521
Residual 0.8341667 0.6810942 0.2676928 11.596639 57.479
Total 1.45125 100.000

−2 log likelihood = 46.533254622

to compare experimental designs based on the model
matrix X and the X′X matrix. If the design is treated
as a probability measure on the design space, then
design efficiencies give a measure of the information
obtained per design point. If the probability measure
is discrete, then 1/n is the weight assigned to each
point, x, in the design space.

For an n-point design, the moment matrix M(ξ)
is M(ξ) = X′X/n, and the determinant of the mo-
ment matrix is |M(ξ)| = |X′X|/np. The model:
Y = Xβ + ε represents the relationship between the
response Y and a set of independent factors X. Ŷ
represents the estimate of Y : Ŷ = Xβ̂. For an n-

point design, a normalized measure of the variance
of prediction of a point x is d = x′[M(ξ)]−1x =
nx′[X′X]−1x. If the errors are independently and
identically distributed with variance σ2, then dσ2/n
is the variance of prediction at point x.

The G-efficiency of a given design is defined as

G-efficiency = Pσ2/nVmax(Ŷ ) = P/dmax,

where

P is the number of parameters in the
model of interest

σ2 is the variance
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n is the design size

Vmax(Ŷ ) = dmaxσ
2/n is the maximum prediction

variance over the experimental region

dmax is the maximum scaled prediction vari-
ance

The G-efficiency aims at minimizing Vmax(Ŷ ), while
D-efficiency aims at maximizing |M(ξ)|. Selection
among various designs can be made by comparing
their G-efficiencies. When the G-efficiency = 1.0, the
design is called G-optimal. Our emphasis is on the
G-efficiency criterion; additional motivation for em-
phasis on this criterion is given by Lucas (2007).

Kiefer and Wolfowitz (1960) proved that, when
the design is a probability measure, then a G-optimal
design will also be D-optimal. This equivalence does
not hold for finite designs. Lucas (1976) pointed
out that the best n-point design will usually have
D-efficiency and G-efficiency less than 1.0. For any
CRD, the value of the G-efficiency is no greater than
the value of the D-efficiency. These criteria tell which
is the best CRD. When each factor is independently
reset on each run and the design is run in a ran-
domized order, the maximum G-efficiency and D-
efficiency that a design can achieve is 1.0. However, in
split-plot experiments with proper blocking, higher
efficiencies relative to a CRD can be attained.

Split-Plot Designs

Anderson and McLean (1974) indicated that,
when an experiment is run as a split-plot design, re-
strictions on randomization occur, resulting in addi-
tional error terms.

Ju (1992) and Ju and Lucas (2002) studied split-
plot designs in industrial experiments. They pointed
out that running an RRO experiment with hard-to-
change factors that are not reset gives the experi-
ment a split-plot structure with the block sizes deter-
mined by the run order. Therefore, the usual assump-
tion that the error at each combination of factors is
normally distributed, with mean zero and constant
variance σ2, or V = σ2[I], will be an oversimplifica-
tion. It can lead to confusing or erroneous results and
can disguise the effects of the easy-to-change factors.
They showed that the variance–covariance matrix V
is

V = σ2
s [I] + σ2

w[UU′],

where σ2
s is the split-plot error, σ2

w is the whole-plot
error, U is the matrix that indicates when the whole-
plot error changes, and U′ is the transpose of the U
matrix. For a completely randomized design, U = I,

so V = (σ2
s + σ2

w)I. They showed that the variance
of the estimates of the parameters vector β can be
represented as

V (β̂i) = Aiσ
2
s + Biσ

2
w.

Ju and Lucas (2002) studied the V matrix when
the level of a single hard-to-change factor is not in-
dependently reset whenever two or more runs occur
at the same level of that factor. They calculated the
value of V over all randomizations and calculated
the prediction variance of Ŷ . They analyzed several
popular designs and showed that running an experi-
ment as a split-plot design can get the proper error
term, increase precision, save time, and save money.
They showed that split-plotting procedures enable
estimation of the whole-plot error and allow the re-
gression coefficients of both the hard- and easy-to-
change factors to be estimated more precisely. Webb
et al. (2004) extended the results to Lk factorial ex-
periments with c factors that are not reset from one
run to the next, discussed a response surface example
with two factors that were not reset, and presented
recommendations for designing experiments contain-
ing factors that are not to be reset. In this paper, we
give a catalog of optimum blocking procedures for
2k experiments with one hard-to-change factor and
give the related cost function. Bingham and Sitter
(2003) noted that performing experiments in robust
parameter designs as split-plot designs often provides
cost savings and increased efficiency. Goos and Van-
debroek (2004) pointed out the increasing popularity
of split-plot designs because some of the factors un-
der investigation in industrial experiments are often
hard to change and highlighted the fact that the re-
sulting compound symmetric error structure affects
estimation and inference procedures as well as the ef-
ficiency of the experimental designs used. They com-
puted D-optimal first and second order split-plot de-
signs and showed that these designs, in many cases,
outperform CRDs in terms of D- and G-efficiency.
They suggested that split-plot designs should be con-
sidered as an alternative to CRDs even if running
a CRD is affordable. Here we show our agreement
with these researchers and make explicit recommen-
dations for running 2-level factorial experiments.

Selecting Efficient Defining Relations

To obtain efficient defining relations when there
is one hard-to-change factor, note that, whenever a
word in the defining relation has a length that is less
than or equal to the length of any term in the model
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of interest, then a contribution to the whole-plot er-
ror occurs. An efficient defining relation can be se-
lected from a list of all possible defining relations; the
relation that results in the smallest prediction vari-
ance can be selected. This “brute force” approach
becomes very time consuming as the number of fac-
tors increases, even for computers. Algorithms exist
for the selection of defining relations for fractional
factorial designs. These algorithms are discussed in
the Appendix, where we modify them to allow the
confounding of a hard-to-change factor with blocks.

In general, for 2k designs in block size 2k/2 and 2
blocks, with one hard-to-change factor (A), the op-
timal block variable is A, and the optimal defining
relation is I = A. This notation for blocking mirrors
the notation used for fractional factorials. For block-
ing, it shows all model terms confounded with blocks;
these model terms are estimated less precisely. Also
in general, for 2k designs in block size 2k/4 and 4
blocks, with one hard-to-change factor (A), the opti-
mal block defining relation is I = A = interaction of
all factors other than A = interaction of all factors
including A.

Therefore, the word length patterns are not pre-
sented for 2k designs with 2 or 4 blocks.

Prediction Variance and G-Efficiency

The prediction variance of Ŷ is

V (Ŷ ) = x′[X ′V −1X]−1x.

For a 2k experiment run using orthogonal block-
ing, the experimental region is a hypercube defined
by the upper and lower levels of each factor. Because

of the orthogonality and ±1 coding used for the 2k

designs, it is easy to prove that the maximum predic-
tion variance, Vmax(Ŷ ), over the experimental region
is

Vmax(Ŷ ) =
1
2k

Pσ2
s +

1
2k

P1bσ
2
w =

1
2k

(Pσ2
s + P1bσ

2
w),

where:

P is the number of parameters in the model
of interest

P1 is the number of model terms that are in
the defining relation, including I

b is the block size

k is the number of factors in the design

n = 2k is the number of experimental points

nb = 2k/b is the number of blocks.

This formula is also the summation of the vari-
ance of each term in the model. The above equations
will be used to calculate the prediction variance of Ŷ
for 2k experiments, when there is one hard-to-change
factor, for various ways of conducting the experi-
ment. The multiplier 1/2k can be omitted by con-
sidering the calculations on an information per point
basis. The results for 23, 24, 25, 26, and 27 designs are
shown in Tables 3 through 7, respectively. In these
tables, the multiplier for the split-plot variance (σ2

s)
is equal to the number of parameters, P , in the model
of interest. The multiplier of the whole-plot variance
(σ2

w) is P1b.

To calculate the G-efficiency of 2k = n point split-
plot designs on an information per point basis, recall
the definition, given earlier, of the G-efficiency for

TABLE 3. Prediction Variance, G-efficiency, and Cost for 23 Blocked Designs

Variance multiplier G-efficiency relative to the CRD
Block No. of Based on λ value of Cost multiplier
size blocks Effects in Split Whole
b nb the model P P1b 0 1 10 Infinity Hard Easy

4 2 Main 4 8 1.00 0.67 0.52 0.50 2 8
Main & 2 FI 7 8 1.00 0.93 0.89 0.88 2 8
All effects 8 8 1.00 1.00 1.00 1.00 2 8

2 4 Main 4 4 1.00 1.00 1.00 1.00 4 8
Main & 2 FI 7 6 1.00 1.08 1.15 1.17 4 8
All effects 8 8 1.00 1.00 1.00 1.00 4 8
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TABLE 4. Prediction Variance, G-efficiency, and Cost for 24 Blocked Designs

Variance multiplier G-efficiency relative to the CRD
Block No. of Based on λ value of Cost multiplier
size blocks Effects in Split Whole
b nb the model P P1b 0 1 10 Infinity Hard Easy

8 2 Main 5 16 1.00 0.48 0.33 0.31 2 16
Main & 2 FI 11 16 1.00 0.81 0.71 0.69 2 16
All effects 16 16 1.00 1.00 1.00 1.00 2 16

4 4 Main 5 8 1.00 0.77 0.65 0.63 4 16
Main & 2 FI 11 8 1.00 1.16 1.33 1.38 4 16
All effects 16 16 1.00 1.00 1.00 1.00 4 16

2 8 Main 5 4 1.00 1.11 1.22 1.25 8 16
Main & 2 FI 11 10 1.00 1.05 1.09 1.10 8 16
All effects 16 16 1.00 1.00 1.00 1.00 8 16

8 Block defining relationship: I = A = BD = CD = BC = ABD = ACD = ABC

a model with P parameters:

G =
P

dmax
=

Pσ2

nVmax(Ŷ )

when there are two error terms: σ2 = σ2
s + σ2

w.

Substituting the maximum prediction variance,
Vmax(Ŷ ), in the hypercube design region, gives

G =
P (σ2

s + σ2
w)

2k
(

1
2k Pσ2

s + 1
2k P1bσ2

w

) .

Rearranging terms, we obtain

G =
Pσ2

s + Pσ2
w

Pσ2
s + P1bσ2

w

.

Dividing both the numerator and denominator by
Pσ2

s ,

G =
1 + λ

1 + P1b
P λ

,

where
λ = σ2

w/σ2
s .

As λ increases to infinity, the G-efficiency increases
asymptotically to

Gλ→∞ = P/P1b

and designs with Gλ→∞ > 1, or P > P1b are super-
efficient relative to a CRD.

Using the above equations, G-efficiencies of 2k de-
signs can be calculated for various block sizes. In

Tables 3 through 7, designs having G > 1, super-
efficient designs, are shown with bold lettering. A
super-efficient design is obtained whenever a design
has a G-efficiency greater than 100% relative to a
CRD. Some super-efficient designs are found for each
number of factors though only a small fraction of the
blocking structures shown are super efficient.

Tables 3 through 7 give the block size (b), the
number of blocks (nb), the model, the variance mul-
tipliers (P and P1b) for the split plot, and the whole-
plot variance components (on a per point basis so
the 2k = n design size is not shown), the G-efficiency
for λ values 0, 1, 10, infinity, and the cost multipli-
ers. The cost multiplier for the hard-to-change factor
is the number of blocks, and for the easy-to-change
factors, it is the number of design points. The word
length patterns, when there are more than 4 blocks,
are shown at the bottom of the corresponding table
to reflect the defining relationships.

For the main effects model, the G-efficiency al-
ways increases with number of blocks. This will hold
true for all 2k designs because of a slight extension
of a result due to Fisher, who proved that a blocking
relationship can always be found to estimate main
effects clear of blocks with block size 2. Main effects
are intentionally confounded with blocks in a split
plot, so the blocking is less restrictive than the block-
ing considered by Fisher. Therefore, only the whole-
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TABLE 5. Prediction Variance, G-efficiency, and Cost for 25 Blocked Designs

Variance multiplier G-efficiency relative to the CRD
Block No. of Based on λ value of Cost multiplier
size blocks Effects in Split Whole
b nb the model P P1b 0 1 10 Infinity Hard Easy

16 2 Main 6 32 1.00 0.32 0.20 0.19 2 32
Main & 2 FI 16 32 1.00 0.67 0.52 0.50 2 32
All effects 32 32 1.00 1.00 1.00 1.00 2 32

8 4 Main 6 16 1.00 0.55 0.40 0.38 4 32
Main & 2 FI 16 16 1.00 1.00 1.00 1.00 4 32
All effects 32 32 1.00 1.00 1.00 1.00 4 32

4 8 Main 6 8 1.00 0.86 0.77 0.75 8 32
Main & 2 FI 16 12 1.00 1.14 1.29 1.33 8 32
All effects 32 32 1.00 1.00 1.00 1.00 8 32

2 16 Main 6 4 1.00 1.20 1.43 1.50 16 32
Main & 2 FI 16 16 1.00 1.00 1.00 1.00 16 32
All effects 32 32 1.00 1.00 1.00 1.00 16 32

8 Block defining relationship:
I = A = BDE = CD = ABDE = ACD = BCE = ABCE
I = A = BDE = CE = ABDE = ACE = BCD = ABCD
I = A = CDE = BD = ACDE = ABD = BCE = ABCE
I = A = CDE = BE = ACDE = ABE = BCD = ABCD
Other relationships can be generated by cyclic rotation of factors.

16 Block defining relationship:
I = A = BE = CE = DE = ABE = ACE = ADE = BC = BD = CD = BCDE = ABC

= ABD = ACD = ABCDE.

plot model terms will be confounded with blocks so
the efficiency will increase (and P1b will decrease)
with increasing numbers of blocks. For seven and
fewer factors, only the block size 2 designs are super-
efficient; for eight or more factors, both block size 2
and block size 4 designs will be super-efficient. Mead
(1988) pointed out a similar conclusion concerning
the efficiency of incomplete block designs, although
he did not address that issue for 2k designs. All the
super-efficient designs dominate CRDs because they
require fewer changes of the hard-to-change factor
and they have a smaller variance of prediction. Be-
cause designs with larger number of blocks require a
larger number of changes for the hard-to-change fac-
tor, the experimenter will make a tradeoff between
increased efficiency and increased cost.

For the main effects plus two-factor interactions
model, the efficiency can reach a maximum at a cer-

tain block size and then decrease with increasing
numbers of blocks. When there is an increase in the
number of interactions confounded with blocks, the
efficiency will decrease. Designs with large numbers
of blocks are dominated by designs with fewer blocks
because the fewer block designs require fewer changes
of the hard-to-change factor and they are more pre-
cise. The dominated designs should seldom if ever be
chosen. For the main effects plus two-factor interac-
tions model, there is again the tradeoff between in-
creased efficiency and increased cost up to the block
size having the maximum efficiency. Again all super-
efficient designs dominate CRDs, and for all numbers
of factors, a super-efficient design that dominates a
CRD can be found.

For the all effects model, the efficiency is 100%
for all blocking structures. The completely restricted
design with two blocks will be chosen if only de-
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TABLE 6. Prediction Variance, G-efficiency, and Cost for 26 Blocked Designs

Variance multiplier G-efficiency relative to the CRD
Block No. of Based on λ value of Cost multiplier
size blocks Effects in Split Whole
b nb the Model P P1b 0 1 10 Infinity Hard Easy

32 2 Main 7 64 1.00 0.20 0.12 0.11 2 64
Main & 2 FI 22 64 1.00 0.51 0.37 0.34 2 64
All effects 64 64 1.00 1.00 1.00 1.00 2 64

16 4 Main 7 32 1.00 0.36 0.24 0.22 4 64
Main & 2 FI 22 32 1.00 0.81 0.71 0.69 4 64
All effects 64 64 1.00 1.00 1.00 1.00 4 64

8 8 Main 7 16 1.00 0.61 0.46 0.44 8 64
Main & 2 FI 22 16 1.00 1.16 1.33 1.38 8 64
All effects 64 64 1.00 1.00 1.00 1.00 8 64

4 16 Main 7 8 1.00 0.93 0.89 0.88 16 64
Main & 2 FI 22 16 1.00 1.16 1.33 1.38 16 64
All effects 64 64 1.00 1.00 1.00 1.00 16 64

2 32 Main 7 4 1.00 1.27 1.64 1.75 32 64
Main & 2 FI 22 24 1.00 0.96 0.92 0.92 32 64
All effects 64 64 1.00 1.00 1.00 1.00 32 64

8 Block defining relationship:
I = A = BDEF = CDE = ABDEF = ACDE = BCF = ABCF
Other relationships can be generated by making different selections and by cyclic rotation of factors.

16 Block defining relationship:
I = A = BEF = CF = DE = ABEF = ACF = ADE = BCE = BDF = CDEF = BCD = ABCE

= ABDF = ACDEF = ABCD.
Other relationships can be generated by making different selections and by cyclic rotation of factors.

32 Block defining relationship:
I = A = BF = CF = DF = EF = ABF = ACF = ADF = AEF = BC = BD = BE = CD = CE

= DE = CDEF = BCDE = BCEF = BCDF = BDEF = ABC = ABD = ABE = ACD = ACE
= ADE = ACDEF = ABCDE = ABCEF = ABCDF = ABDEF.

sign efficiency and number of changes of the hard-to-
change factor are considered. The need to estimate
the whole-plot error and a desire for increased preci-
sion of the whole-plot effect could cause the designer
to choose an experiment with more blocks. These is-
sues are addressed more completely in the next sec-
tions, where we examine the cost of information.

The approach developed in this paper will be
extended to fractional factorial designs elsewhere.
Our approach will be compared to the literature on
minimum aberration split-plot (MASP) experiments

(Bingham and Sitter (1999, 2001)). Before Bingham
et al. (2004), the MASP papers used a restricted def-
inition of a split plot and only visited each level of
the whole-plot factor once. This often gives designs
with a higher variance of prediction than we recom-
mend. Bingham et al. (2004) removed this restric-
tion and tabulated many designs that are minimum
variance and/or super-efficient. However, in their de-
signs, Bingham et al. do not discuss the variance of
prediction and do not always achieve the best vari-
ance of prediction. Kulahci et al. (2006) highlighted
the acute need for alternatives to MASP designs.
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TABLE 7. Prediction Variance, G-efficiency, and Cost for 27 Blocked Designs

Variance multiplier G-efficiency relative to the CRD
Block No. of Based on λ value of Cost multiplier
size blocks Effects in Split Whole
b nb the Model P P1b 0 1 10 Infinity Hard Easy

64 2 Main 8 128 1.00 0.12 0.07 0.06 2 128
Main & 2 FI 29 128 1.00 0.37 0.24 0.23 2 128
All effects 128 128 1.00 1.00 1.00 1.00 2 128

32 4 Main 8 64 1.00 0.22 0.14 0.13 4 128
Main & 2 FI 29 64 1.00 0.62 0.48 0.45 4 128
All effects 128 128 1.00 1.00 1.00 1.00 4 128

16 8 Main 8 32 1.00 0.40 0.27 0.25 8 128
Main & 2 FI 29 32 1.00 0.95 0.91 0.91 8 128
All effects 128 128 1.00 1.00 1.00 1.00 8 128

8 16 Main 8 16 1.00 0.67 0.52 0.50 16 128
Main & 2 FI 29 16 1.00 1.29 1.69 1.81 16 128
All effects 128 128 1.00 1.00 1.00 1.00 16 128

4 32 Main 8 8 1.00 1.00 1.00 1.00 32 128
Main & 2 FI 29 20 1.00 1.18 1.39 1.45 32 128
All effects 128 128 1.00 1.00 1.00 1.00 32 128

2 64 Main 8 4 1.00 1.33 1.83 2.00 64 128
Main & 2 FI 29 34 1.00 0.92 0.86 0.85 64 128
All effects 128 128 1.00 1.00 1.00 1.00 64 128

16 Block defining relationship:
I = A = BEFG = CFG = DEG = ABEFG = ACFG = ADEG

= BCE = BDF = CDEF = ABCE = ABDF = ACDEF = BCDG = ABCDG.
Other relationships can be generated by cyclic rotation of factors.

32 Block defining relationship:
I = A = BFG = CG = DF = EFG = BCF = BDG = BE = CDFG = CEF = DEG = BCD

= BCEG = CDE = BDEF = BCDEFG = ABFG = ACG = ADF = AEFG = ABCF = ABDG
= ABE = ACDFG = ACEF = ADEG = ABCD = ABCEG = ACDE = ABDEF = ABCDEFG.

Other relationships can be generated by cyclic rotation of factors.
64 Block defining relationship:

I = A = BG = CG = DG = EG = FG.
Defining relationship can be generated by multiplication.

Cost Function

The cost of running the experiment, in terms of
dollars or hours, provides another criterion for se-
lection among alternate designs. An objective of the
experimental design may be to maximize the cost
efficiency of the experiment. A simple cost model
breaks the cost of running the experiment into two

components: one for changing the level of the hard-
to-change factor and the other for changing the level
of the easy-to-change factors, as follows:

C = CHNH + CENE = CHnb + CENE

where:
C is the cost of changing the factor levels in

the experiment
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CH is the cost of changing the hard-to-change
factor level

NH = nb is the number of changes of the hard-
to-change factor levels including the first
setting, which equals nb, the number of
blocks

CE is the cost of changing all the easy-to-
change factor levels

NE = n is the number of changes in the level of
the easy-to-change factors, which equals
n, the number of runs in the design.

Cost Function for Designs Run in a Random
Order

The expected number of settings of the hard-to-
change factor, including the initial setting, for a de-
sign run in a random order, can be obtained based
on nonparametric statistics. Mood (1940) and Anbari
(1993) showed that the expected number of settings,
or blocks, simplifies to

E(blocks) =
n

2
+ 1.

Comparison of the prediction variance, G-efficien-
cy, and cost of designs run in a random order with
designs run in blocks, reveals that, when a hard-to-
change factor is present, properly blocked designs
dominate designs using a randomized run order from
prediction variance, G-efficiency, and cost perspec-
tives, in each case for 2k designs. Table 8 shows these
comparisons for a 24 experiment.

Prediction Variance and Cost Function for
Completely Randomized Designs

Using the prediction variance formula, we note
that the G-efficiency for a completely randomized
2k design is 1.0. Because the levels of the hard-to-
change and easy-to-change factors are reset for each
run, the number of these changes equals the num-
ber of runs, n. Therefore, the cost multiplier for all
factors in these designs is equal to the design size
= n, the highest cost alternative. For example, for a
24 design, the cost multiplier for all factors is 16, as
shown in Table 8.

When there is a hard-to-change factor, CRDs
should only be contemplated when it is particularly
important to obtain precise estimates of the hard-to-
change factor effect. The cost of CRDs is substan-
tially higher than the cost of RNR designs. This ex-
plains the reason for the popularity of the latter in
industry. Further discussions of this point are con-
tained in Ju and Lucas (2002) and in Webb et al.
(2004). These papers also develop the cost factor (ex-
pected number of changes) and expected variance for
an RNR design. The economics of factorial and frac-
tional factorial split-plot experiments are also dis-
cussed by Bisgaard (2000).

Table 8 compares the cost and variance multipliers
for a 24 design using a main-effects and 2-factor in-
teractions model. Table 8 shows that a 4-block design
(with I = A = BCD = ABCD) dominates a CRD or
an RNR design, and a blocked design using 8 blocks.
The 4-block design’s cost multiplier and the hard-
to-change factor variance (σ2

w) multiplier are both

TABLE 8. Comparison of Alternatives for the Selection of Block Size in 24 Design

Main-Effects and 2-Factor Interactions Model

Variance multiplier
Cost multiplier∗∗

Easy (σ2
s) Hard (σ2

w) Hard

Completely randomized design∗∗∗ 11 11 16
Design run in a random order (RNR) 11 12∗ 9∗

Blocked design, block size = 2 11 10 8
Blocked design, block size = 4 11 8 4
Blocked design, block size = 8 11 16 2

∗ Averaged over all randomizations (Anbari and Lucas (1994)).
∗∗ Expected cost = Expected number of changes.

∗∗∗ In a completely randomized design (CRD), there is only one error term: σ2 = σ2
s + σ2

w.
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smaller than those for the dominated design. Similar
results hold for all 2k experiments. The 2-block de-
sign is not dominated because its cost multiplier is
2. It can be worthwhile to use this design when CH

is large.

Selection of Block Size Based on
Cost and Prediction Variance

A model can be constructed to minimize the cost
of information obtained from the experiment as fol-
lows:

Minimize Z = {Cost/Information}

Information is inversely related to the error or pre-
diction variance of Ŷ . Therefore

Minimize Z = {Cost/(1/Variance)}
= {Cost × Variance}.

Therefore, minimizing of the cost of information
is achieved by minimizing the product of the cost of
the experiment and the prediction variance of Ŷ , as
follows:

Min Z = C × V (Ŷ ),

where C and V (Ŷ ) were given earlier. Therefore,

Min Z = (CHnb + CENE) · {1/2k · (Pσ2
s + P1bσ

2
w)}

(remember that nb = NH and NE = n). Defining
r = CH/CE and rearranging terms, the minimization
can be satisfied as

Min Z = (nbr + n)(P + P1bλ).

The above terms can be obtained from the formulas
or tables presented in this paper for various designs.

For example, for a main-effects and 2-factor inter-
actions model for a 24 design, we obtain

Z =

⎧⎪⎨
⎪⎩

(4r + 16)(11 + 8λ)
= 44r + 32rλ + 176 + 128λ nb = 4

(2r + 16)(11 + 16λ)
= 22r + 32rλ + 176 + 256λ nb = 2.

For a main-effects plus interactions model, the 8-
block design is dominated by 2- and 4-block designs,
so the 8-block design need not be considered.

For given values of λ and r, the better design can
be chosen. The line of indifference is found by equat-
ing both costs. Figure 2 shows the optimum block
sizes and number of blocks for the main-effects plus 2-
factor interactions model and Figure 3 shows the op-
timum block sizes and number of blocks for the main
effects model. While similar figures could be drawn
for other 2k experiments, they depend on λ and r,

FIGURE 2. Optimum Block Size for 24 Experiments,

Main-Effects Plus 2-Factor Interactions Model.

whose values are not generally known. Conceptually,
this shows that a completely restricted design with
two blocks may be the best choice to minimize the
cost of information when the CH/CE ratio (r) is
large. This justifies this frequently used approach.
Using nb values above 2 but less than the smallest nb

value, having a minimum whole-plot variance multi-
plier (P1b) can minimize the cost of information, and
it does allow the estimation of both variance compo-
nents. In general, block sizes larger than 2 and up to
the block size having the minimum whole-plot vari-
ance multiplier can also be considered. There is al-
ways a blocking structure that dominates a CRD and
an RNR design on both a cost and variance basis, so
they are not recommended. We recommend using a
CRD or an RNR design much less frequently and
using split-plot blocking much more frequently.

FIGURE 3. Optimum Block Size for 24 Experiments,

Main-Effects Model.
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Conclusions

In this paper, we showed how to design and run 2k

experiments to get the smallest prediction variance
and lowest cost. We presented and demonstrated an
algorithm to allow the selection of efficient defining
relations in 2k designs where there is one hard-to-
change factor. We presented methods for calculating
the prediction variance and G-efficiency when there
are hard-to-change and easy-to-change factors and
demonstrated the calculations by applying them to
23, 24, 25, 26, and 27 designs and by tabulating the
results for various block sizes.

We developed a cost function for the experimental
design, constructed a cost model, and found the block
size that minimizes the cost of information for the
model of interest. We compared variance and cost re-
sults to those of CRDs and RNR designs. We showed
that properly blocked designs dominate the current
practice of running experiments in a random order
from prediction variance (G-efficiency) and cost per-
spectives. It may be appropriate to include these
results in books for design of experiments, as they
demonstrate the superiority of blocked split-plot ex-
periments over randomized designs. Future work will
extend the results presented here to designs that have
two or more hard-to-change factors.

Appendix
Algorithm for Selecting Efficient

Defining Relationships

Development of the Algorithm

Greenfield (1976, 1978), Franklin and Bailey
(1977), and Franklin (1985) proposed algorithms for
the selection of defining relations in various exper-
imental designs. Anbari (1993, 2004) discussed the
existing algorithms and suggested modifications to
support the selection of design generators that al-
low the confounding of hard-to-change factor(s) with
blocks and that result in designs having the minimum
prediction variance of Ŷ for the models of interest:
main effects, main effects plus 2-factor interactions,
and all effects. Loeppky et al. (2006) discussed the
construction of optimal nonregular fractional facto-
rial designs with two different types of factors based
on the word-length pattern to emphasize the estima-
tion of the effects of interest.

The algorithm presented in this paper requires the
confounding of the hard-to-change factor and seeks
the defining relation(s) that have the smallest num-
ber of words that affect the prediction variance of the

main effects model and the main-effects and 2-factor
interactions model. The algorithm is based on seek-
ing words of length 3 or more because these words do
not contribute to the prediction variance of the main
effects model or the main-effects and 2-factor inter-
actions model. Such words have an impact only on
models having 3 or more factor interactions. Because
all words in the defining relation have a potential im-
pact on the prediction variance, it is essential that as
many words as possible in the defining relation and
its generalized interactions be of length 3 or more.

The proposed algorithm accomplishes this objec-
tive by requiring 3 independent sources for letters to
be used in the defining relation generator. By plac-
ing different letters at the top of the table used in
the algorithm and selecting words for the defining
relation generator from 2 different columns, the gen-
eralized interaction resulting from the multiplication
of any 2 words selected from any 2 different columns
has at least 2 letters. By further placing other letters
and their generalized interactions at the beginning of
each row in the table used in the algorithm and se-
lecting words for the defining relation generator from
2 different rows, the generalized interaction resulting
from the multiplication of any 2 words selected from
any 2 different rows has at least 1 additional letter.
Thus, the resulting generalized interactions selected
in this fashion will have at least 3 letters and will not
impact the prediction variance of the main effects
model or the main-effects and 2-factor interactions
model.

The words used for the defining relation gener-
ator are selected to be the longest available words
from each column in available rows. Therefore, these
words, and the entire defining relation, will have the
least impact on the prediction variance of the models
under consideration.

Steps of the Algorithm

The algorithm is carried out in the following steps:

1. For a 2k design with block size of 2p (and 2k−p

blocks), the number of independent generators
required is k − p. Therefore, construct a table
having the number of columns equal to k − p.

2. List the hard-to-change factor(s) at the top
of the table, followed by as many factor(s) as
needed to make up the k − p generators.

3. List the remaining factors at the left side of the
table, starting with I. Complete the column
by showing all generalized interactions of these
factors.
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4. Multiply the column created in step 3 by the
heading of each column and list the resulting
words in the appropriate column. For I, the
only eligible results are those resulting from
multiplying I by the hard-to-change factor(s).
For the hard-to-change factor(s), the only eli-
gible results are those resulting from multiply-
ing the hard-to-change factor(s) by I.

5. Start to construct the defining relation by se-
lecting I and the hard-to-change factor(s).

6. Select the longest word from the first column
and include it in the defining relation. Elimi-
nate that column and corresponding row from
further consideration.

7. Select the longest word from the next column
and include it in the defining relation. Do not
use a word from a previously used row. If all
rows have been used, select the longest word(s)
in the next column(s) and include it(them) in
the defining relation.

8. Stop when the defining relation has in it the
required number of independent generators.
This should coincide with reaching the last col-
umn in the table. Generate the balance of the
defining relation by multiplication.

9. If the rows were exhausted at the same time as
the columns (Example: 26 design in block size
= 4) or prior to the columns (example: 27 de-
sign in block size = 4), then an efficient form of
the defining relation has been obtained. “Ef-
ficient” is used here to refer to a defining re-
lation that has a small number of words that
affect the prediction variance of the model of
interest. If the defining relation has the small-
est possible number of words that affect the
prediction variance of the model(s) of interest,
then this defining relation is the most efficient
and can be referred to as the optimal defining
relation.

10. If the columns were exhausted before the rows
(example: 25 design in block size = 4), then
other form(s) of an efficient defining relation
exists, which may be equivalent to the form
already obtained. The other form(s) can be
generated by selecting the longest word in a
different column and proceeding as described
above to obtain another efficient form of the
defining relation.

The following steps allow finding other defining
relations by enumeration, but do not generate new

forms of the defining relation:

11. Rotate the factors cyclically by moving the
last factor at the top of the table to the bot-
tom of the factors in the column at the left
of the table. Move the first factor after I from
that column and place it at the top of the ta-
ble, after the hard-to-change factor(s). Do not
rotate factors if the table contains only one
row other than I or one column other than the
hard-to-change factor(s). The defining relation
form would have already been found in these
cases.

12. Repeat steps 3 through 10 for the new table.
13. Repeat steps 11 and 12 until the factor that

originally appeared at the top of the table in
the first column after the hard-to-change fac-
tor(s) reaches the row immediately below I in
the column at the left of the table.

14. From the generated list of defining relations,
select the one that has the smallest number
of words that affect the prediction variance of
the model(s) of interest. This can be referred
to as the optimal defining relation.

Example of the Algorithm

An example of applying the algorithm to a 25 de-
sign in block size = 4 is shown in Table A.

TABLE A: 25 Design, Block Size = 4

A B C

I A — —
D — BD CD
E — BE CE
DE — BDE CDE

Block size = 4 = 22, number of blocks = 25−2 = 23 =
8, number of columns at top of table = 3.
Optimal defining relations:
(1) I = A = BDE = CD

= ABDE = ACD = BCE = ABCE
(2) I = A = BDE = CE

= ABDE = ACE = BCD = ABCD
(3) I = A = CDE = BD

= ACDE = ABD = BCE = ABCE
(4) I = A = CDE = BE

= ACDE = ABE = BCD = ABCD
Generate other relations by cyclic rotation of factors.
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