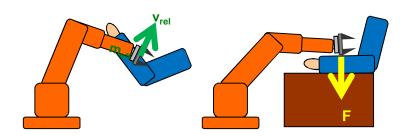


Björn Matthias, ABB Corporate Research, 2014-03-10

Industrial Safety Requirements for Collaborative Robots and Applications

ERF 2014 – Workshop: Workspace Safety in Industrial Robotics: trends, integration and standards


Safety Requirements for Collaborative Robots and Applications

- Safety Standards for Applications of Industrial Robots
 - ISO 10218-1, ISO 10218-2
 - Related standards and directives
- Safety Functions of Industrial Robot Controller
 - Review of basic safety-related functions
 - Supervision functions
- Present Standardization Projects
 - ISO/TS 15066 Safety of collaborative robots
 - Biomechanical criteria
- Collaborative operation

Safety Standards for Applications of Industrial Robots ISO 10218-1, ISO 10218-2

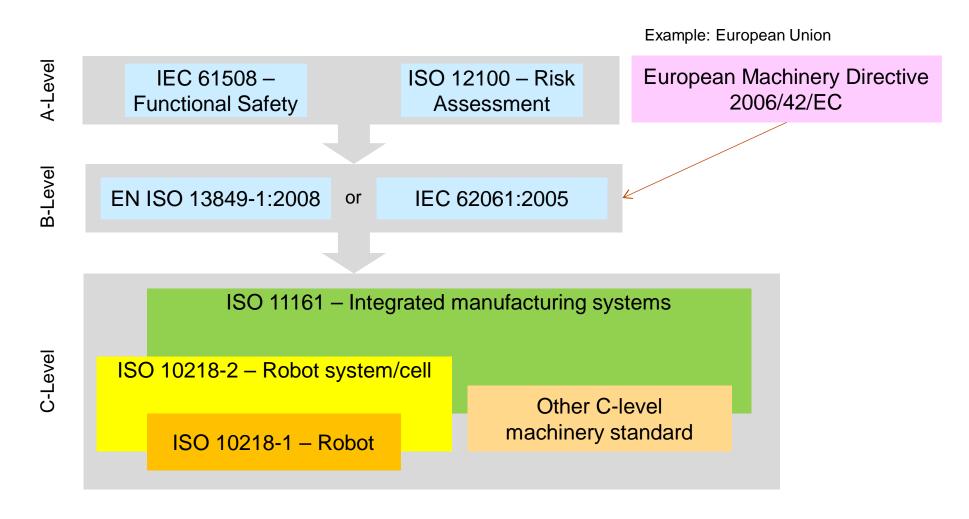
ISO 10218-1

- Robots and robotic devices Safety requirements for industrial robots — Part 1: Robots
- Scope
 - Industrial use
 - Controller
 - Manipulator
- Main references
 - ISO 10218-2 Robot systems and integration

Common references

ISO 13849-1 / IEC 62061 – Safetyrelated parts of control systems IEC 60204-1 – Electrical equipment (stopping fnc.)

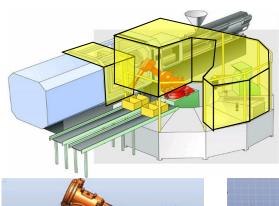
ISO 12100 – Risk assessment ISO 13850 – E-stop

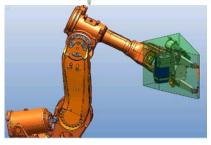

ISO 10218-2

- Robots and robotic devices Safety requirements for industrial robots — Part 2: Robot systems and integration
- Scope
 - Robot (see Part 1)
 - Tooling
 - Work pieces
 - Periphery
 - Safeguarding
- Main references
 - ISO 10218-1 Robot
 - ISO 11161 Integrated manufacturing systems
 - ISO 13854 Minimum gaps to avoid crushing
 - ISO 13855 Positioning of safeguards
 - ISO 13857 Safety distances
 - ISO 14120 Fixed and movable guards

Safety Standards for Applications of Industrial Robots Related Standards and Directives

Safety Functions of Industrial Robot Controller Review of Basic Safety-Related Functions




- E-stop
- Protective stop
 - Stop categories (cat. 0, cat. 1, cat. 2 as per IEC 60204-1)
- Operating modes
 - Automatic / manual / manual high-speed
- Pendant controls
 - Enabling
 - Start / restart
 - Hold-to-run
- Limit switches
- Muting functions
 - Enable / limits switches /

. . .

Safety Functions of Industrial Robot Controller Supervision Functions

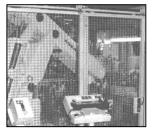
- Basic supervision of robot motion, i.e. motion executed corresponds to motion commanded
- Supervision of kinematic quantities
 - Position
 - TCPs, elbow, solid model of manipulator, tool
 - Speed
 - TCPs, elbow, ...
 - Acceleration, braking
- Possibility: Supervision of dynamic quantities, esp. for collaborative operation
 - Torques
 - Forces
- Possibility: Application-related / user-defined supervision functions

Present Standardization Activities ISO/TS 15066 – Safety of Collaborative Robots

© ISO 2010 - All rights reserved ISO TC 184/SC 2 N **ISO/PDTS 15066** Secretariat 212 Robots and robotic devices — Collaborative robots Robots et equipment robotique — Robots collaboratives — Élément complémentaire This document is not an ISO international Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an international Standard Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation. Document subtype: Document stage: (30) Committee Document language: E prod/temp/DOCX2PDF/SOTC/DOCX2PDF/SOTC.SYSTEM@GRVWEB100_487/16339786_1.doc STD

- Design of collaborative work space
- Design of collaborative operation
 - Minimum separation distance S / maximum robot speed K_R
 - Static (worst case) or dynamic (continuously computed) limit values
 - Safety-rated sensing capabilities
 - Ergonomics
- Methods of collaborative working
 - Safety-rated monitored stop
 - Hand-guiding
 - Speed and separation monitoring
 - Power and force limiting (biomechanical criteria!)
- Changing between
 - Collaborative / non-collaborative
 - Different methods of collaboration
- Operator controls for different methods, applications
 - Question is subject of debate: What if a robot is purely collaborative? Must it fulfill all of ISO 10218-1, i.e. also have mode selector, auto / manual mode, etc.?

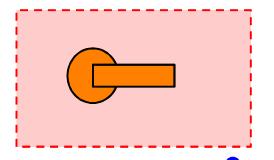
Safety Requirements for Collaborative Robots and Applications



- Short Introduction to Human-Robot Collaboration (HRC)
 - Evolution of Safety Concepts
 - Definition of Collaborative Operation
 - Types of Collaborative Operation
 - Examples of Collaborative Operation
- Collaborative Application Scenarios
 - ABB Dual-Arm Concept Robot
 - Other Relevant Robot Developments
- Present Challenges for Collaborative Small-Parts Assembly (SPA)
 - Safety
 - Ergonomics
 - Productivity
 - Application Design
 - Ease-of-Use

Short Introduction to HRC Evolution of Safety Concepts

absolute separation of robot and human workspaces

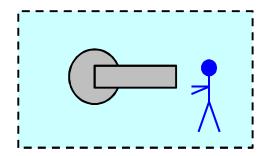


complete union of robot and human workspaces

Discrete safety

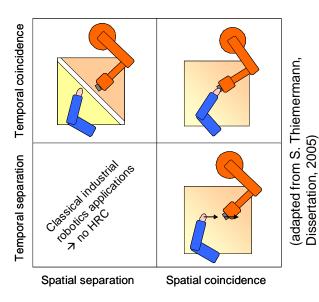
→ No HRC

Conventional industrial robots


Safety controllers

→ Limited HRC

Harmless manipulators


→ Full HRC

Collaborative industrial robots

Short Introduction to HRC Definition of Collaborative Operation

- collaborative operation
 state in which purposely designed
 robots work in direct cooperation
 with a human within a defined
 workspace
- Degree of collaboration
 - Once for setting up (e.g. lead-through teaching)
 - 2. Recurring isolated steps (e.g. manual gripper tending)
 - 3. Regularly or continuously (e.g. manual guidance)

Safety Functions of Industrial Robot Controller Types of Collaborative Operation According to ISO 10218-1

ISO 10218-1, clause	Type of collaborative operation	Main means of risk reduction	Pictogram (ISO 10218-2)		
5.10.2	Safety-rated monitored stop (Example: manual loading-station)	No robot motion when operator is in collaborative work space	R BJ		
5.10.3	Hand guiding (Example: operation as assist device)	Robot motion only through direct input of operator			
5.10.4	Speed and separation monitoring (Example: replenishing parts containers)	Robot motion only when separation distance above minimum separation distance			
5.10.5	Power and force limiting by inherent design or control (Example: <i>ABB Dual-Arm Concept Robot</i> collaborative assembly robot)	In contact events, robot can only impart limited static and dynamics forces			

Safety Functions of Industrial Robot Controller Types of Collaborative Operation According to ISO 10218-1

	Speed	Separation distance	Torques	Operator controls	Main risk reduction	
Safety-rated monitored stop	Zero while operator in CWS*	Small or zero Gravity + load compensation only None while operator in CWS*		No motion in presence of operator		
Hand guiding	Safety-rated monitored speed (PL d)	Small or zero	As by direct operator input	E-stop; Enabling device; Motion input	Motion only by direct operator input	
Speed and separation monitoring	Safety-rated monitored speed (PL d)	Safety-rated monitored distance (PL d)	As required to execute application and maintain min. separ. distance	None while operator in CWS*	Contact between robot and operator prevented	
Power and force limiting	Max. determined by RA+ to limit impact forces	Small or zero	Max. determined by RA+ to limit static forces	As required for application	By design or control, robot cannot impart excessive force	

^{*} CWS = Collaborative Work Space

⁺ RA = Risk Assessment

Safety Functions of Industrial Robot Controller Collaborative Operation (1)

Safety-rated monitored stop (ISO 10218-1, 5.10.2, ISO/TS 15066)

- Reduce risk by ensuring robot standstill whenever a worker is in collaborative workspace
- Achieved by
 - Supervised standstill Category 2 stop (IEC 60204-1)
 - Category 0 stop in case of fault (IEC 60204-1)
- Application
 - Manual loading of end-effector with drives energized
 - Automatic resume of motion

Hand guiding (ISO 10218-1, 5.10.3, ISO/TS 15066)

- Reduce risk by providing worker with direct control over robot motion at all times in collaborative workspace
- Achieved by (controls close to end-effector)
 - Emergency stop, enabling device
 - Safety-rated monitored speed
- Application
 - Ergonomic work places
 - Coordination of manual + partially automated steps

Safety Functions of Industrial Robot Controller Collaborative Operation (2)

Speed and separation monitoring

(ISO 10218-1, 5.10.4, ISO/TS 15066)

- Reduce risk by maintaining sufficient distance between worker and robot in collaborative workspace
- Achieved by
 - distance supervision, speed supervision
 - protective stop if minimum separation distance or speed limit is violated
 - taking account of the braking distance in minimum separation distance
- Additional requirements on safety-rated periphery
 - for example, safety-rated camera systems

Power and force limiting by inherent design or control

(ISO 10218-1, 5.10.5, ISO/TS 15066)

- Reduce risk by limiting mechanical loading of humanbody parts by moving parts of robot, end-effector or work piece
- Achieved by low inertia, suitable geometry and material, control functions, ...
- Applications involving transient and/or quasi-static physical contact (SPA = small parts assembly)

Safety Functions of Industrial Robot Controller Collaborative Operation (3)

Standard industrial robot	Special robots for collaborative operation (following ISO 10218-1, clause 5.10.5)
Injury severity S2 (irreversible)	Injury severity S1 (reversible)
Exposure F1 (rare)	Exposure F2 (frequent)
Avoidability P2 (low)	Avoidability P2 (low)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Required safety performance level: PL d	Required safety performance level: PL c

ABB-activities in standardization:

ISO/TC 184/SC 2/WG 3 "Robots and robotic devices - Industrial safety" DIN NA 060-30-02 AA "Roboter und Robotikgeräte"

Present projects in standardization: ISO/TS 15066 "Collaborative robots – safety" ISO/TS on manual loading stations Upcoming 2014: review of ISO 10218-1, -2

Biomechanical Criteria

Biomechanical Limit Criteria Types of Contact Events

ISO / TS 15066 - clause 5.4.4 "Power and force limiting"

Free impact / transient contact

- Contact event is "short" (< 50 ms)
- · Human body part can recoil

Accessible parameters in design or control

- Effective mass (robot pose, payload)
- Speed (relative)

Pain threshold

Highest loading level accepted in design

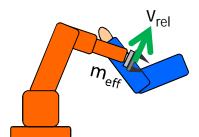
Minor injury threshold

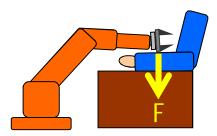
Highest loading level accepted in risk assessment in case of single failure

Constrained contact / quasi-static contact

- Contact duration is "extended"
- Human body part cannot recoil, is trapped

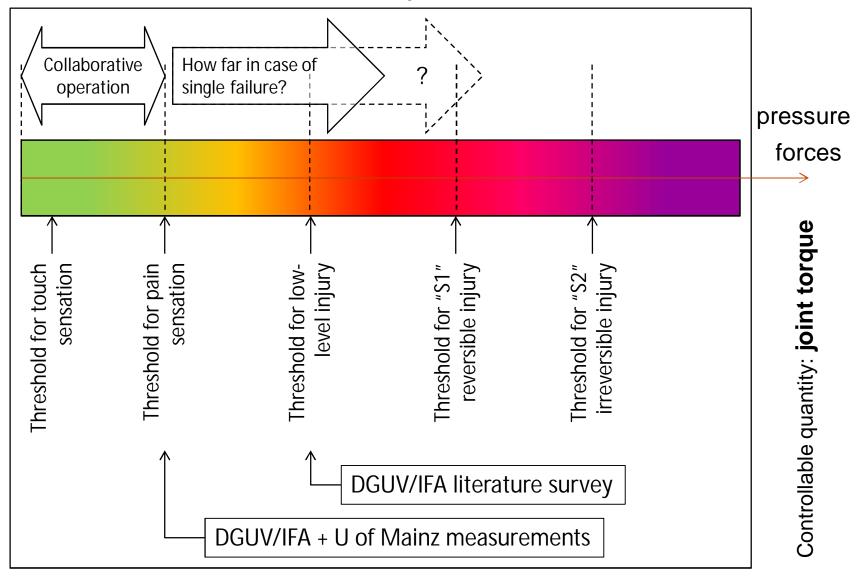
Accessible parameters in design or control


Force (joint torques, pose)


Pain threshold

Highest loading level accepted in design

Minor injury threshold


Highest loading level accepted in risk assessment in case of single failure

Quasi-static contact – Severity measures

Biomechanical Limit Criteria Barrett Technologies

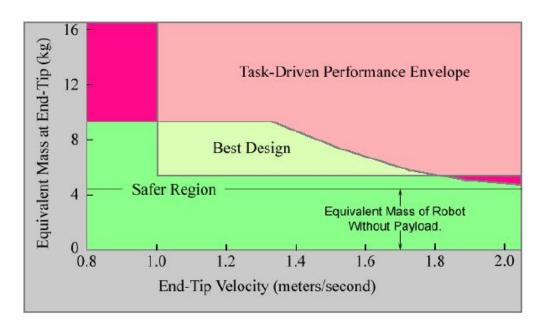


Figure 18 - Safety diagram for the robot design example.

Intrinsically Safer Robots, Prepared May 4, 1995, for the NASA Kennedy Space Center as the Final Report under NASA contract #NAS10-12178

http://www.smpp.northwestern.edu/savedLiterature/UlrichEtAlIntrinsicallySaferRobots.pdf

- Early work by W. Townsend et al. at Barrett Technologies
- Trade-off between moving mass and relative velocity

$$\frac{E}{A} = \frac{mv^2}{2A}$$

$$\approx 2\frac{J}{cm^2}$$

assuming

$$m = 4 kg$$

$$v = 1 \frac{m}{s}$$

$$A = 1 cm^{2}$$

Biomechanical Limit Criteria Standford Univ

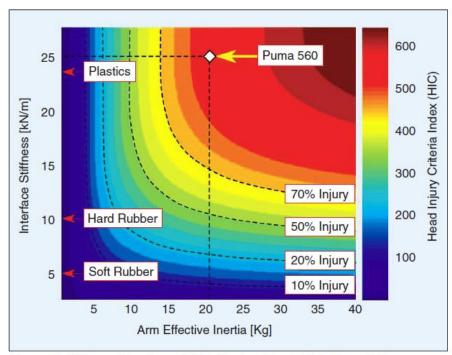
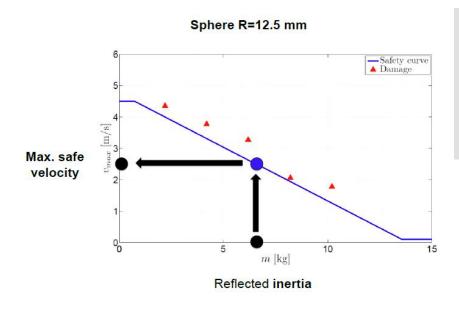
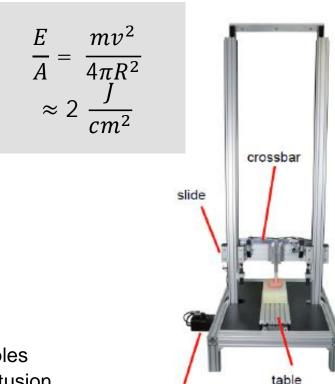


Figure 1. HIC as a function of effective inertia and interface stiffness.


M. Zinn, O. Khatib, et al., IEEE Robotics & Automation Magazine, June 2004, p. 12-21

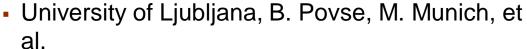

- Early work by Prof. Oussama Khatib et al.at Stanford University
- Transfer assessment criterion from automotive crashes
- Calculated curves
- Considers injury modes of brain collision with inside of skull, i.e. SDH (subdural hematoma), DAI (diffuse axonal injury), etc., but not superficial and less severe mechanisms

$$HIC = \left[\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} a(t)dt\right]^{2,5} (t_2 - t_1)$$

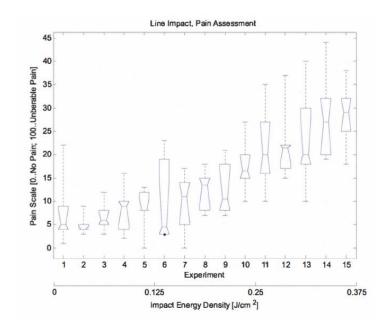
Biomechanical Limit Criteria DLR

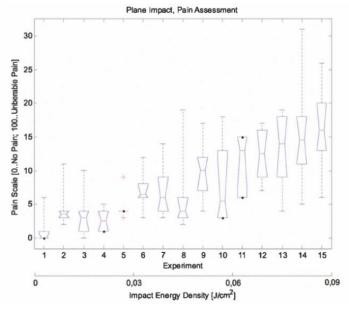
motor1

- DLR, Sami Haddadin et al.
- Drop test impact measurements on pig skin samples
- Microscopic analysis for evidence of onset of contusion
- Correlate to human soft tissue due to known similarity of properties
- "safety curves" determined for specific impactor shapes and range of relative velocity and reflected inertia

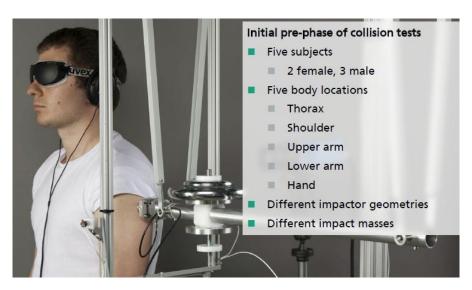

S. Haddadin, et al., IEEE Robotics & Automation Magazine, Dec. 2011, p. 20-34

Biomechanical Limit Criteria Univ of Ljublana




-	0 20	No pain
-	2040	Mild pain
-	40 60	Moderate pain
_	60 80	Horrible pain
_	80 100	Unbearable pain

- Transient impact with line and plane shaped impactors
- Pain rating on scale 0..100
- Onset of pain around 20
- → onset of pain around 0.1 to 0.2 J/cm²


Povse et al., Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, The University of Tokyo, Tokyo, Japan, September 26-29, 2010

Biomechanical Limit Criteria Fraunhofer IFF

R. Behrens, N. Elkmann et al., work in progress

- Fraunhofer IFF, Magdeburg, N. Elkmann et al.
- Collision tests with live test subjects
- Study has been ethically approved by the relevant commission
- Investigation of the onset of injury as defined by the following:
 - Swelling
 - Bruise
 - Pain
- Long-term goal:
 - Statistically significant compilation of verified onset of injury thresholds for all relevant body locations

Biomechanical Limit Criteria DGUV/IFA Limit Values

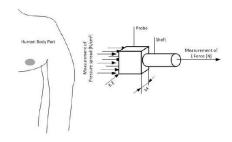
Table 2:	Limit values for the forces, pressures and body deformation constant				
according to the body regions of the body model					

	model – and individ	dual regions with codification	Limit v	alues of	the require	ed criteria
BR		Regions	CSF	IMF	PSP	CC
		7,000	[N]	[N]	[N/cm ²]	[N/mm]
SC	1.1	Skull/Forehead	130	175	30	150
ith ne	1.2	Face	65	90	20	75
1. Head with neck	1.3	Neck (sides/neck)	145	190	50	50
₩	1.4	Neck (front/larynx)	35	35	10	10
2. Trunk	2.1	Back/Shoulders	210	250	70	35
	2.2	Chest	140	210	45	25
	2.3	Belly	110	160	35	10
2	2.4	Pelvis	180	250	75	25
	2.5	Buttocks	210	250	80	15
- Se	3.1	Upper arm/Elbow joint	150	190	50	30
3. Upper extremities	3.2	Lower arm/Hand joint	160	220	50	40
3. lextr	3.3	Hand/Finger	135	180	60	75
Se	4.1	Thigh/Knee	220	250	80	50
4. Lower extremities	4.2	Lower leg	140	170	45	60
ext.	4.3	Feet/Toes/Joint	125	160	45	75

BR	Body region with codification	IMF	Impact force
Regions	Name of the individual body region	PSP	Pressure/Surface pressing
CSF	Clamping/Squeezing force	CC	Compression constant

- BG/BGIA risk assessment recommendations according to machinery directive – Design of workplaces with collaborative robots, U 001/2009e October 2009 edition, revised February 2011
- Values for quasi-static and transient forces derived from literature study

http://publikationen.dguv.de/dguv/pdf/10002/bg_bgia_empf_u_001e.pdf


Biomechanical Limit Criteria Univ Mainz – Preliminary Results

Measurement localization			Force [N]				Peak pressure [N/cm²]			
Body model		Description	N	Q1	Median	Q3	N	Q1	Median	Q3
	. 1	Mid of forehead	36	30	45	52	36	92	114	134
6 m m	2	Temple	36	17	24	27	35	50	85	154
\= <u>*</u>	3	Masticatory muscle	35	13	18	21	32	46	100	197
	4	Neck muscle	35	15	18	25	33	51	108	15
	5	7th neck muscle	36	27	39	48	36	103	149	19
110 " " 1	6	Shoulder joint	36	19	27	37	36	87	99	15
11011	7	5th lumbar vertebra	36	50	64	72	36	109	133	19
// //	8	Sternum	36	31	42	53	36	82	99	11
/ // - " \\ " \	9	Pectoral muscle	25	25	30	46	25	63	89	16
1//1\	10	Abdominal muscle	35	21	29	38	34	73	119	24
and Y I	11	Pelvic bone	36	32	42	54	36	130	181	19
編	12	Deltoid muscle	36	33	45	57	35	108	137	18
1 A. A	13	Humerus	36	38	44	57	36	142	178	25
\ \ \ /	14	Radius bone	36	32	38	50	36	116	158	19
15151	15	Forearm muscle	36	29	34	42	36	90	134	16
1-0-1	16	Arm nerve	36	36	44	60	35	106	122	17
*22	17	Forefinger pad nd	36	51	63	83	36	117	163	23
\ \ \ /	18	Forefinger pad d	36	50	61	80	36	124	159	21
141	19	Forefinger end joint nd	36	38	47	67	36	160	208	26
1.1.3	20	Forefinger end joint d	36	35	46	61	36	125	176	21
with.	21	Thenar	36	38	46	59	36	116	144	19
	22	Back of the hand nd	36	49	56	81	36	126	171	21
	23	Back of the hand d	36	45	58	72	35	145	183	21
	24	Palm of the hand nd	36	38	48	56	36	129	166	22
	25	Palm of the hand d	36	36	45	58	36	118	156	21
	26	Thigh muscle	36	44	57	72	36	95	133	23
	27	Kneecap	36	47	65	82	36	135	194	23
	28	Shin splint	36	39	55	67	36	131	168	23
	29	Calf muscle	36	49	63	79	35	107	128	19

- University of Mainz, Prof. A. Muttray
- Experimental research
- Ethics committee approved
- Ongoing to determine pain sensation thresholds for 30 different locations on body for quasi-static loading

A. Muttray et al.

Biomechanical Limit Criteria Additional Work

Y. Yamada et al. – Univ. of Nagoya

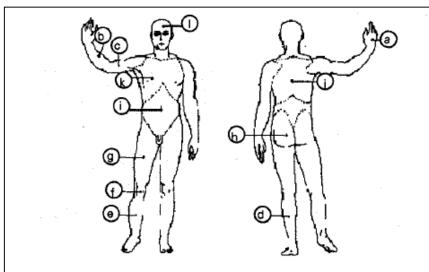
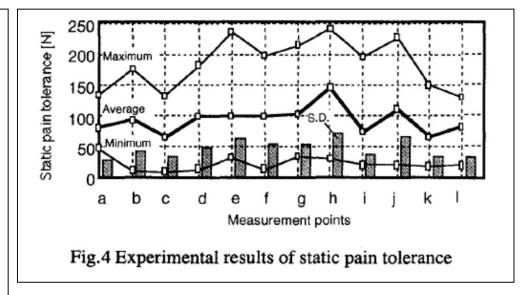



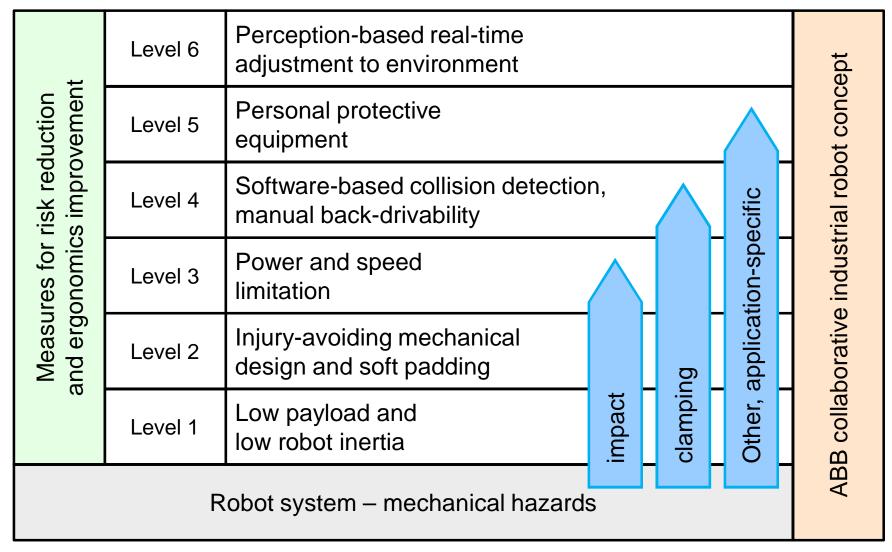
Fig.2 Measurement points for evaluating human pain tolerance

Probe diameter approx. 10 – 15 mm

Y. Yamada et al., IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 2, NO. 4, p. 230 (1997)

Examples of Collaborative Robots for Power and Force Limiting

→ ABB Dual-Arm Concept Robot (DACR) a.k.a. "FRIDA"


Collaborative Application Scenarios ABB Dual-Arm Concept Robot

- Harmless robotic co-worker for industrial assembly
- Human-like arms and body with integrated IRC5 controller
- Agile motion based on industry-leading ABB robot technology
- Padded dual arms safely ensure productivity and flexibility
- Complements human labor for scalable automation
- Light-weight and easy to mount for fast deployment
- Multi-purpose lightweight gripper for flexible material handling

Collaborative Application Scenarios Protection Levels

Collaborative Application Scenarios Other Relevant Robot Developments


Industrial applications

Collaborative Application Scenarios Volkswagen Salzgitter – Glow Plug Assembly

Collaborative Application Scenarios BMW Spartanburg – Door Sealing

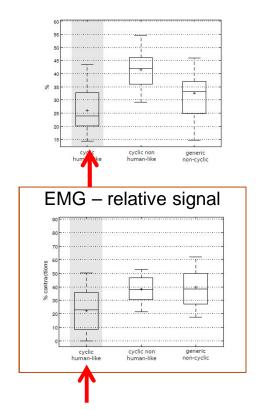
Ergonomics

Productivity

Application Design

Ease-of-Use

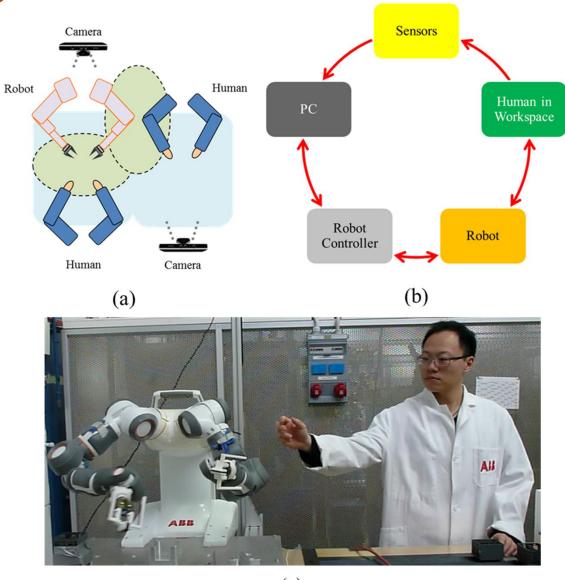
Present Challenges for Collaborative SPA Ergonomics



Worker acceptance of collaborative robots in production

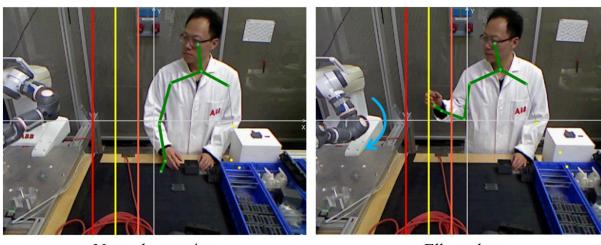
First experimental determination of stress indicators as function of motion characteristics

SCB - relative signal

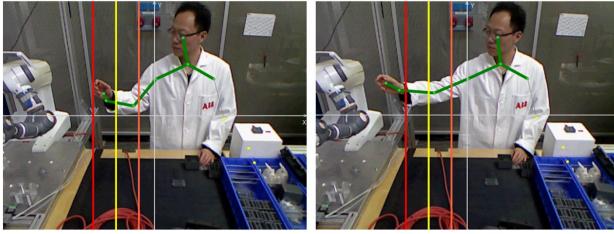


- All stress indicators show lowest levels for human-like motion
- ECG Electrocardiography
- SCR Skin conductivity, resistivity
- EMG Electromyography

Reference: P. Rocco, A. Zanchettin, DEI, Politecnico di Milano; work in EU-FP7 Project ROSETTA



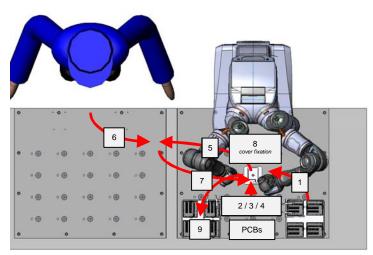
Present Challenges for Collaborative SPA Productivity



Present Challenges for Collaborative SPA Productivity

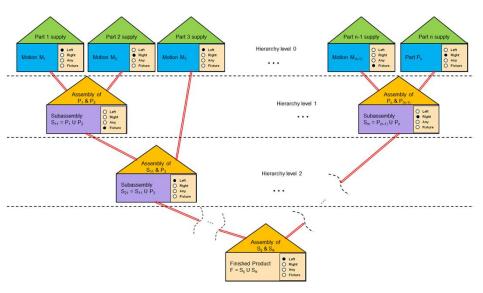
Normal operation

Elbow down



Speed reduction

Standstill



Present Challenges for Collaborative SPA Application Design

| Second Second

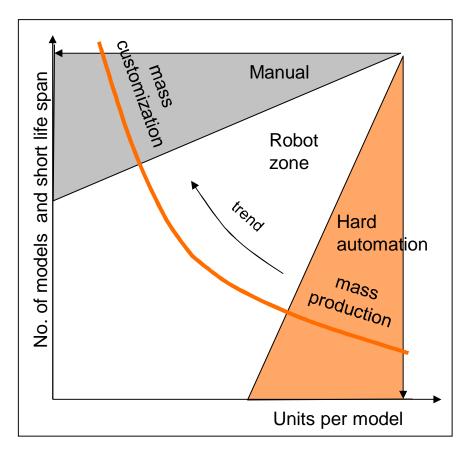
- Methodology is research topic
 - Annotated assembly graph
 - Assignment of assembly steps to robots, workers
 - Layout of work cell, assembly line
 - ...

Present Challenges for Collaborative SPA Ease-of-Use

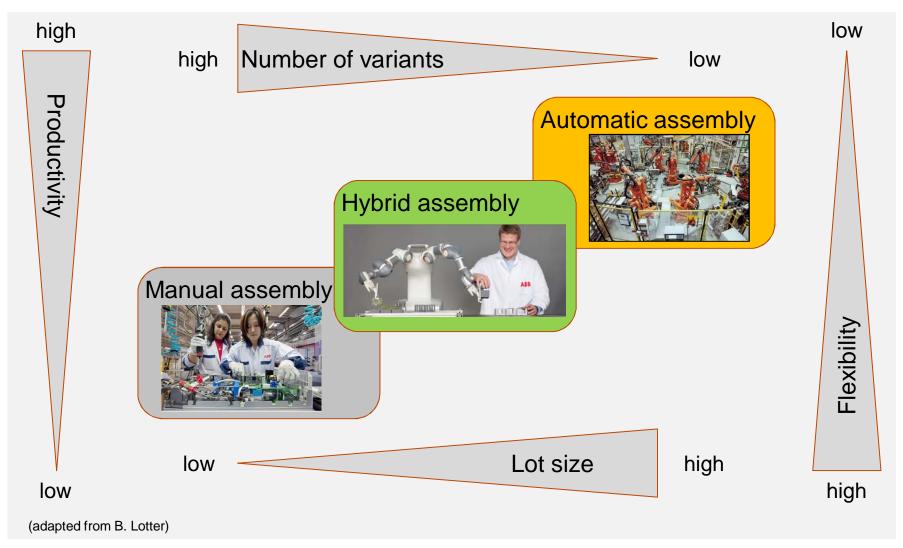
- Criteria and approaches are research topics
 - Alternatives to textual programming
 - Input modality must be intuitive and robust
 - Intelligent default values for configuration parameters
 - Selective hiding / exposing of complexity adapted to user group

• ...

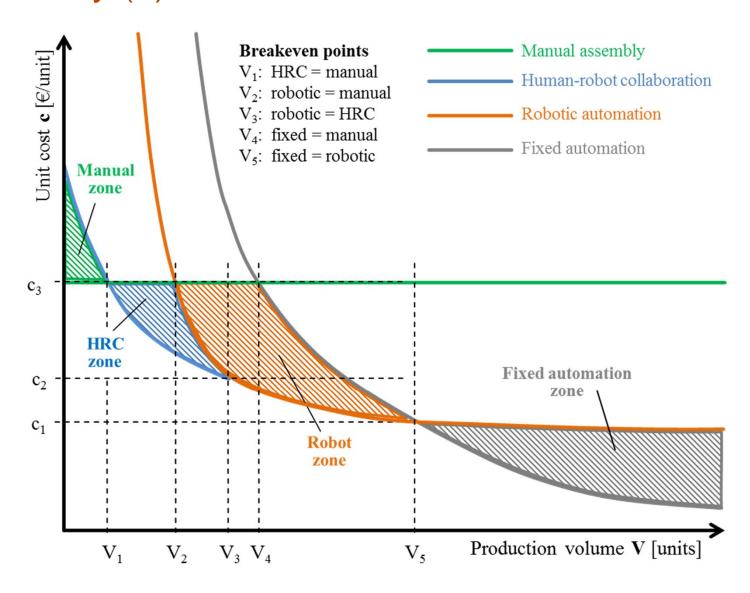
Open Discussion What are your needs?


- Type of application
 - Assembly, pick-and-place, measurement & testing, ...
 - Criteria for suitability of HRC
- Degree of automation
 - Distribution of tasks among robots / operators
 - Types of interfaces, handover, conveying, ...
 - Frequency of changeover, typical lot sizes
- Keys for acceptance of partial automation / mixed humanrobot environment
 - Ease-of-use
 - Application design
 - Ergonomics
 - Distribution of roles and responsibilities
 - ...

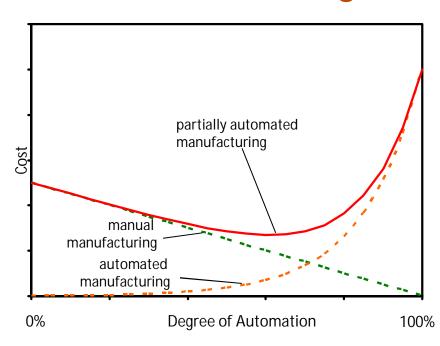
Economic Motivations


Economic Background and Motivation

- Societal Trend
 - Individuality and differentiation with respect to peers
- Resulting Market Trend
 - Increasing no. of product variants
 - Decreasing product lifetime
 - Away from "mass production" towards "mass customization"
- Challenge to Industrial Production
 - Efficient handling of large range of variants and short model lifetimes
 - Common solution today: Mostly manual production in Asia



Moving Humans + Robots Closer Together Productivity (1)



Moving Humans + Robots Closer Together Productivity (2)

Moving Humans + Robots Closer Together HRC for scalable degree of automation

- Optimum degree of automation < 100%
 - Raising degree of automation becomes increasingly expensive, esp. on changeover
 - Manual manufacturing becomes increasingly competitive for remaining fraction of production task

Worker Strengths

- Cognition
- Reaction
- Adaptation
- Improvisation

Worker Limitations

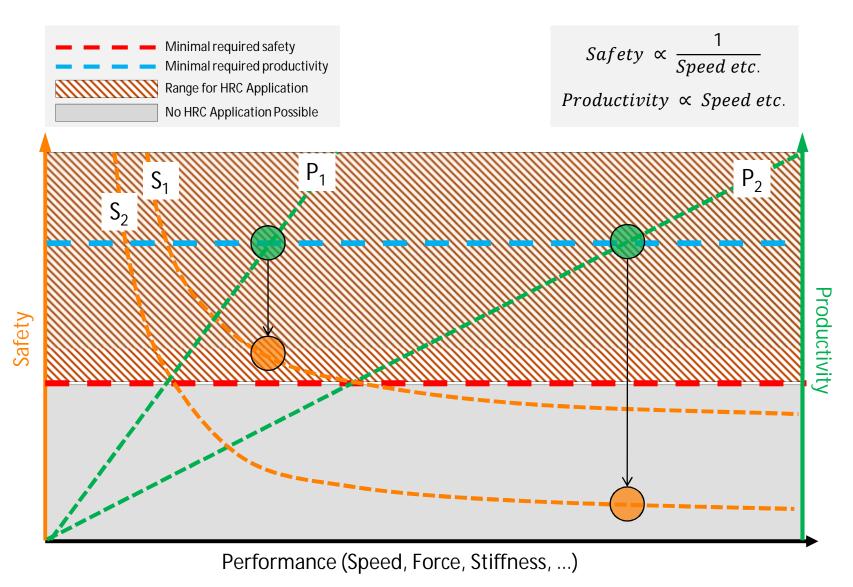
- Modest speed
- Modest force
- Weak repeatability
- Inconsistent quality

Robot Strengths

- High speed
- High force
- Repeatability
- Consistent quality

Robot Limitations

- No cognitive capability
- No autonomous adaptation
- Modest working envelope



Synergy: HRC

- Automation of applications requiring high flexibility (variants ↑, lot sizes ↓)
- New ergonomics functionality
- New applications in which robots previously have not been used

 S_k = example dependence of safety on speed for application no. k

 P_k = example dependence of productivity on speed for application no. k

Power and productivity for a better world™

