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Introduction

What This Short Cut Covers

Development of a new product requires the product
development team to address many complex customer
requirements during the commercialization process.
Consider a situation in which a new product being
developed must meet specified upper and lower specifi-
cation limits based on Voice of the Customer inter-
views. The design team must model and understand
the sources of potential variation in the new product
that need to be monitored and controlled if the
product is to meet the identified customer needs. The
process of analyzing component variation and design-
ing a final product that meets customer tolerance
requirements is known as statistical tolerancing.

In this short cut, various Design for Six Sigma tech-
niques for determining the impact of multiple sources
of variation on a final product are examined in detail.
A procedure is described for using representative
models for individual product components to estimate
the expected overall level of variation in the perform-
ance of a final product.

Three methods of tolerance analysis are presented and
the merits of each are discussed: Worst Case Analysis,

Root Sum of Squares Analysis, and Six Sigma Tolerance
Analysis. A detailed case study example, involving
multiple sources of variation, is employed to illustrate
the application of these methods. Minitab® is used to
identify the best-fitting distributions from data sets for
individual components. Monte Carlo Simulation with
Crystal Ball® is then employed to determine the most
important individual sources of variation and the
overall variation of the final product. Finally, Crystal
Ball’s OptQuest® optimization feature is utilized to
determine the required design value for each key
parameter to meet final customer requirements.

Introduction

During the commercialization process, we often have
to determine the impact of multiple sources of varia-
tion on our final product. As we develop representative
models for individual product components, we can use
this information to estimate the overall level of varia-
tion we expect to find in our final product. The process
of analyzing component variation and designing a final
product that meets customer tolerance requirements is
known as statistical tolerancing.




Worst Case Analysis

In order to demonstrate the concept of
statistical tolerancing, in this short cut

we provide an Excel Case Study and
Minitab data file adapted from our forthcoming
book Commercializing Great Products with Design for Six
Sigma (2007, http://www.prenhallprofessional.com/
title/0132385996). In order to follow the step-by-step
analysis provided in the short cut, it is also necessary
that the reader have copies of of Minitab statistical
software and Crystal Ball simulation software.

A copy of Crystal Ball’'s OptQuest optimization
routine is also required in order to perform the
optimization analysis presented. Trial versions of
Minitab (http://www.minitab.com) and Crystal Ball
(http://www.decisioneering.com) may be downloaded
from the Web sites provided.
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Let’s suppose for moment that we’ve been asked to
make some candy for an upcoming family gathering.
As shown in Figure 1, we have selected a candy box
and must determine how many pieces of candy we can
put in the box given its length. Initially, it seems pretty
obvious that we can fit four pieces of candy lengthwise
in the box. But as we see in the figure, there is a gap
between the candy and the end of the box. Is the gap

important? Does the gap vary? How do we estimate the
size of the gap? To answer these questions, we intro-
duce three methods of tolerance analysis:

» Worst Case Analysis
» Root Sum of Squares (RSS)

» Six Sigma Tolerance Analysis

Gap

Piece 4 | Piece 3 Piece 2 | Piece 1

FIGURE 1 Candy box top view

Worst Case Analysis

The first type of tolerance analysis we consider is
worst case analysis. In worst case tolerancing analysis,
we must have additional information about the



Worst Case Analysis

dimensions of the candy pieces and the candy box
being used. As we see in Figure 2, each piece of candy
has a nominal length of 1.240 inches, while the candy
box is expected to have a length of 4.976 inches. Using
this information, we can determine the number of
candy pieces that will fit within the length of the box.
We can also develop an initial estimate of the gap
dimension, as shown in Figure 3. We expect that we
will be able to put four pieces of candy in each row of
the box given the box length dimension. In addition,
we estimate that the nominal value of the gap will be
0.016 inches. But are things really this simple? As we
also see in Figure 2, both the candy pieces and the box
have variation of +/-0.003 inches around their nominal
dimensions.

Using the nominal dimensions and variation estimates
for the candy pieces and the box, we can estimate the
nominal and worst case values for the gap. As shown
in Table 1, the minimum worst case estimate of the gap
is calculated by taking the lowest value estimated for
the box dimension and subtracting the highest values
estimated for the candy pieces. Using this set of worst
case assumptions, we determine that the minimum
worst case gap is estimated to be 0.001 inches.

Candy
Piece
e
1.240 +/- .003
4.976 +/- .003
Candy Box

FIGURE 2 Candy and box dimensions: side view

4.976

1.240

1.240

1.240

1.240

Gap =.016

Candy Box

FIGURE 3 Nominal gap value




Worst Case Analysis

TABLE 1 Worst Case Gap Calculations

Nominal Nominal Candy Minimum Maximum Candy Maximum Minimum Candy
Dimensions Dimensions Dimensions
Candy Box 4.976 4,973 4.979
Piece 1 -1.24 -1.243 -1.237
Piece 2 -1.24 -1.243 -1.237
Piece 3 -1.24 -1.243 -1.237
Piece 4 -1.24 -1.243 -1.237
Total Candy -4.960 -4.972 -4.948
Gap 0.016 0.001 0.031

Similarly, the maximum gap can be estimated by using
the maximum box dimension and the lowest candy
dimensions. Using the given candy and box dimen-
sions, we can estimate the worst case maximum gap to
be 0.031 inches. A diagram representing the minimum
and maximum worst case tolerance scenarios is
presented in Figure 4.

We now understand that under the worst case assump-
tion, the gap between the candy and the box is
expected to be 0.016 inches, but we also understand
that it could range from a minimum of 0.001 inches to
a maximum of 0.031 inches. If we are in the process of
commercializing a new candy product, should we
proceed to production scale-up using these estimates?

What are the chances that we will really have a worst
case condition in a given box of candy? If we use the
tolerance information of +/-0.003 inches as an estimate
of +/-3 standard deviations for normally distributed
data, the probability of receiving an abnormally long or
abnormally short piece of candy at the extreme values
of the range would be 1-0.9973 or 0.0027. For all four
pieces of candy and the box to be at an extreme value
the probability would be (0.0027)% or
0.000000000000143. This is certainly a very unlikely
event! Given the very low probability that either worst
case scenario will occur, we turn to a more practical
and useful tolerancing method, the root sum of squares
analysis.



Root Sum of Squares Analysis

4.973 realistic tolerancing analysis we turn to the root sum of
squares (RSS) technique. To demonstrate the RSS tech-
1.243 nique, let’s again examine the candy packaging
1.243 arrangement presented in Figure 5.
1.243
- 1.243 i
) Candy Candy Candy Candy
Piece Piece Piece Piece
Gap =.001 Candy Box
e
1.240 +/- .003
4.979 < >
4.976 +/- .003
1.237
1.237
1.237 Candy Box
1.237
FIGURE 5 Root sum of squares candy arrangement
Gap = .031 Candy Box
As stated earlier, a worst case tolerance analysis occurs

when each piece of candy and the box are each at their
maximum levels of variation from the nominal. For our
candy packaging example, the worst case value is calcu-
lated as:

FIGURE 4 Worst case gap estimates

Root Sum of Squares Analysis

As we have seen, worst case tolerance analysis is inter-
esting but the probability that a worst case scenario

Worst Case Variation = Piece, + Piece, + Piece, + I_’iece4 + Piece, + Box
will actually occur is very low. To develop a more

=0.003 + 0.003 + 0.003 + 0.003 + 0.003
= 0.015 inches




Root Sum of Squares Analysis

A more realistic estimate of variation occurs when we i Candy Box

take advantage of the statistical fact that variances are

additive. Let’s now suppose that +/-0.003 inches repre- L

sents +/-3 standard deviations of variation for each o e l
piece of candy and for the box. In this case, the stan- Envelope

dard deviation for each component is 0.001 inches. piGag

Using the additive property of variances, we can now Gap—>| |«

estimate the standard deviation of the candy box
assembly gap shown in Figure 6 as:

Gap Distribution Piece 4 Piece 3 Piece 2 Piece 1
o=/(0.001)" +(0.001)" +(0.001)" +(0.001)" +(0.001)° =0.0022 inches \

If the tolerance for the gap is plus or minus 3 standard
deviations, it can be calculated as:

30 = /(0.003)" +(0.003)" +(0.003)" +(0.003)" +(0.003)" =0.0067 inches X‘ \ \ _&

1.240 1.240 | 1.240 1.240

Using our new value for root sum of squares tolerance, WP4  wP3  pwP2  pP1
we can develop a new expected tolerance range for the FIGURE 6 Candy box gap variation
gap, as seen in Figure 7. The nominal value for the gap

is still 0.016 inches, as calculated for our worst case In Figure 8, we see that because these “tolerance”
tolerance analysis. The root sum of squares tolerance ranges have been set at +/-3 standard deviations, we
value of 0.0067 inches is now used to calculate a would expect the gap to exceed the new minimum or

minimum gap estimate of 0.0093 and a maximum esti- Maximum gap estimates 0.27% of the time.
mate of 0.0227 inches.



Six Sigma Tolerance Analysis

Box Nominal 4.976 Tolerance  .0032
Piece 1 Nominal -1.240 K Tolerance 0032
Piece 2 Nominal -1.240 Tolerance  .0032
Piece 3 Nominal -1.240 Tolerance  .0032
Piece 4 Nominal -1.240 Tolerance  .0032
Nomianl Gap 016 /000045
Minimum Gap .0093 Total Tolerance +/-.0087
Maximum Gap .0227

FIGURE 7 Root sum of squares tolerance estimation

Root-Sum-Squares

USL Gapo= ./ c?+o+g ot d,
Gapa = /(.001)2 + (001)2 + (001)2 + (.001)2 + (.001)2

Gapo=.0022

LSL

-3s +3s % “Defective” = 27%

Xbar Gap
.016 .0227

FIGURE 8 Root sum of squares percent defective

.0093

The root sum of squares estimate of tolerance range is
much tighter than that calculated using the worst case

analysis approach. For this reason, we see that the
probability of exceeding the minimum and maximum
values of the gap is also much more realistic.

But should we set a tolerance range based on what our
product can currently achieve in performance? The
tolerance range should in fact be determined by the
difference between the upper and lower specifications
required to meet customer requirements. If we cannot
meet those customer requirements consistently, we
may be forced to seek relief from those tight specifica-
tions from the customer. In this case, the root sum of
squares analysis gives us guidance to help in those
specification negotiations. But our goal in design is to
create Six Sigma products and processes. At best, our
current product using the RSS approach is a 3 sigma
level product unless we negotiate less stringent specifi-
cation limits with the customer. Let’s next examine
how we can use the candy box assembly information
we have to design a Six Sigma product.

Six Sigma Tolerance Analysis

To develop a Six Sigma product without changing
the product specs, we will have to reduce product
variation. In this section, we demonstrate how the root
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SECTION 4

Six Sigma Tolerance Analysis

sum of squares method can be used to design for Six
Sigma product performance. We also introduce the use
of Monte Carlo simulation for design in more complex
tolerancing situations.

As described in our discussion of process capability in
Chapter 28 of our forthcoming book, a Six Sigma
process is defined as a process that has six short-term
standard deviations between the process operating
point and the closest specification limit. Using this
definition, we can calculate the gap standard deviation
required to make our candy box example a Six Sigma
product. As shown in Figure 9, we calculate the
required gap standard deviation by simply subtracting
the lower spec limit from the upper spec limit and
dividing the result by 12. The resulting gap standard
deviation required for Six Sigma performance is
0.001117 inches. We can also estimate the standard
deviation required for individual candy pieces and for
the box itself by using the root sum of squares calcula-
tion. If the standard deviations of all components are
equal, the root sum of squares calculation indicates
that the standard deviation for each candy piece

and for the box must be 0.000S inches. In the short
term, this Six Sigma process will produce out-of-spec

conditions only 0.001 times out of a million.

In the long term, assuming a 1.5 standard deviation
process shift, the process will produce product outside
of the tolerance range 3.4 times out of a million
opportunities.

Six Sigma Standard Deviation
Gapo=(USL-LSL) 12
Gapo=(.0227-.0093)/ 12
Gapo=.001117

LSL USL

Root-Sum-Squares

Gap o =.001117 =,/ G+ ar+ o+ 03+ 0%

=% i 001117= [5u(0ye
Xbar Gap )
.0093 016 0227 o =-0005 inches

FIGURE 9 Producing a Six Sigma product with root sum
of squares Analysis

Different Levels of Variation

While calculating the required standard deviation using
root sum of squares analysis is relatively straightfor-
ward, we typically do not have equal standard devia-
tions for each system component. In situations in
which we have components with different levels of
variation, tolerance analysis becomes more complex.
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Six Sigma Tolerance Analysis

Let’s consider our candy box example again with a
slight modification. Consider the situation in which
variation is occurring in each piece of candy, the box,
and the film used to wrap the candy. During product
development, the Candy Wrapper Film design team has
determined that a wrapper consisting of three layers of
film produces the best candy taste for the customer. As
shown in Figure 10, the new wrapper design consists of

Candy Thickness = .865 +/-.003
 ——

\ \ \ Layer 3 Film Thickness

Layer 1 Film Thickness Layer 2 Film Thickness

three film layers that unfortunately have different char- Gap Candy Box — Side View

acteristics of variation. The design team has gathered
data for the variation of each film layer’s thickness,
and the data are presented in the Minitab worksheet
Film Variation Data.MTW in the project file Statistical
Tolerancing.MP].

4.976

Identifying the Best Distribution Fit -
with Minitab
To evaluate the gap between the box and the candy 1:240
with the new wrapper design, we must identify the best e

e g o : . Gap =.016 Candy Box
distribution fit for our film data. We take advantage of
Minitab’s distribution identification tool and click FIGURE 10 Tolerance analysis with objects of differing

Stat > Reliability / Survival > Distribution Analysis variation
(Right Censoring) > Distribution ID Plot, as shown
in Figure 11.
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Six Sigma Tolerance Analysis
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FIGURE 11
Minitab

Identifying the best distribution fit with

We initially analyze the Film 1 data using the Weibull,
Lognormal, Exponential, and Normal distributions, as
described in Figure 12. Minitab offers additional distri-
butions that we can use to further evaluate the data, if
needed.

Distribution ID Plot-Right Censoring

C1 Film 1 Variables: Censor... J
c2 Filn 2 — .
c3 Film 3 Fila 1 Opticns... [
Frequency plional)
™ By variable: I
 Use all distributions
& Specify
W Distribution 1:  [Weibull =
¥ Distribution 2:  [Lagnormal ~|
r'-; Di LTI 3: iF p j
¥ Distribution 4:  [Normal =l
Help [ Cancel

FIGURE 12 Film 1 distribution ID setup

In Figure 13, we see Minitab’s output from the distribu-
tion ID analysis. The best distribution fit is identified
by examining both the graphical and analytical results
presented. We see through visual inspection of the
graphs developed by Minitab that the straight line for
the Weibull distribution appears to fit the data best.
Analytically, the Weibull distribution also has the
highest value for the correlation coefficient, giving us
verification that the Weibull distribution provides the



SECTION 4

Six Sigma Tolerance Analysis

best fit to the Film 1 data. To define the parameters for fa Goh B Tk Wrdon o R ,
the Weibull distribution, we further analyze the data e SO T INE ] At bl
with Minitab’s Distribution Overview Analysis by } = .

clicking Stat > Reliability / Survival > Distribution e

Analysis (Right Censoring) > Distribution Overview T e

Plot, as shown in Figure 14. SO nMeammmin T

Z:‘”"‘m Dtrbuten Ansiyzs (birary Cenzorng) ¢ | 5 e e
e T S Ll sl et 1
-+ Distribution ID Plot for Film1 ove st s ze » B Pomere e Cie. e gl

.——_-_—E" B oW b | 2 Gomparametric Distributicn Anaiyss... ‘

Probability Plot for Film1

LSXY Estimates-Complete Data Ageeierated Life Teseng...

= et |5 segressonvamufecan... o
Lognormal Ca-es,:a‘x&e::: > ; S
Veo:l |5 zroe ansiyea.., 1
s - 0555
= ® Lagrormal
E - W 03t
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i -t e 3 Normal
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FIGURE 13 Film 1 distribution ID setup Help | Cancel |

FIGURE 14 Film 1 distribution overview analysis
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Six Sigma Tolerance Analysis

The results of the distribution analysis are shown in

Figure 15. Here, Minitab provides the information we

need to define the Film 1 data distribution as we

prepare to conduct a Monte Carlo simulation. Instead
of mean and standard deviation, a Weibull distribution

uses scale and shape parameters to define the best
distribution fit for a given set of data. For the Film 1
data, we see that the shape parameter is calculated to
be 0.587863 and the scale parameter is 0.156633.

| - Distribution Overview. Plot for Film1

Distribution Overview Plot for Film1
LSXY Estimates-Complate Data

»or
o 1 %]
F L
.
Percaal
HoHs -

S5,

== Distribution ID Plot for Film 2

Probability Plot for Film 2

LSXY Estimates-Complate Data

A similar analysis for the Film 2 data suggests that
the Film 2 data are normally distributed, as seen in
Figure 16.
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FIGURE 15 Film 1 distribution overview analysis

FIGURE 16 Film 2 distribution overview analysis

Further analysis of the Film 2 data with Minitab’s
Distribution Overview Analysis, shown in Figure 17,
indicates that the mean of the data is 0.125071 inches
and the standard deviation is 0.0077098 inches.
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* Distribution Overview Plot for Fim2._— - LB

Distribution Overview Plot for Film 2
LSXY Estimates-Complate Data

Probability Plot for Film 3
LSXY Estimates-Complete Data
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FIGURE 17 Film 2 distribution overview analysis FIGURE 18 Film 3 distribution overview analysis

Identifying the Best Distribution Fit To use Crystal Ball’s distribution fit capability we begin

with Crystal Ball with the Distribution Gallery. At the bottom of the
Analyzing the Film 3 data with the Distribution ID Plot  gallery, as shown in Figure 19, is the Fit button, which
does not yield an acceptable result, as shown in Figure  we click. We are then asked to identify the location of
18. There is a significant disagreement between the the data in the analysis worksheet. In Figure 20, we
data and the straight line for each distribution. We have indicated that the Film 3 data we wish to analyze
could reanalyze the data using other distributions avail-  are located in the cell range D5 to D104.

able in Minitab, but we instead use a similar distribu-

tion fit function that is available in Crystal Ball.
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