

Rynite® PET

thermoplastic polyester resin

Rynite® glass-reinforced thermoplastic polyester resins contain uniformly dispersed glass or glass fibers/mineral in polyethylene terephthalate (PET), specially formulated for rapid crystallization during the injection molding process. This makes possible the production of high-performance parts by conventional injection molding techniques. Rynite® PET resins are available in a variety of compositions. For detailed molding information, refer to the Rynite® PET thermoplastic polyester resin molding guide. For additional information on safety, health, and environmental concerns. refer to the MSDS or call Dial DuPont First at (800) 441-0575. For automotive inquiries, call (800) 533-1313.

Drving Considerations

In order to mold parts with excellent strength, toughness, dimensional stability, and surface appearance, recommended drying is as follows:

Drying Conditions for Rynite® PET Resins

iiiiot iioppoi			
Air Temperature	107-135°C	(225-275°F)	
Dew Point of Air	-18°C (0°F) or lower	
Airflow Rate	0.8-1.0 CF	M per lb/hr resin	processed
	(3.0–3.7 m ²	hr per kg/hr res	in processed)
Inlet Desiccant Bed			
Air Temperature	66°C (150°	F) or lower	
Drying Time at	107°C (225°F)	121°C (250°F)	135°C (275°F)
Virgin Resin	8	3	2
Recycled Regrind	8	4	3
Wet Resin	8	6	4
Maximum	16	9	6

Note:

Inlet Honner

- Moisture content above 0.02 wt% will result in loss of strength and toughness.
- · Parts molded from wet resin will not exhibit surface defects, but will still suffer poor end-use performance.

Melt Temperatures

Cylinder temperature settings for Rynite® PET resins depend upon a number of factors, e.g., the size and type of machine, shot size, cycle, etc. The recommended typical cylinder and melt temperatures are as follows:

Typical Cylinder and Melt Temperatures

Resin	Cylinder Settings, °C (°F)				Preferred Minimum Melt
Series	Rear	Center	Front	Nozzle	Temperature
500, 900	260–290	260–295	265–295	275–300	280–300
	(500–550)	(500–560)	(510–560)	(530–570)	(540-570)
400, Flame	260–275	260–280	266–280	260–290	270–290
Retardant	(500–530)	(500–540)	(500–540)	(500–560)	(520–550)

Note: The nozzle temperature should be adjusted to prevent nozzle freeze-off or drool. Temperatures in the range of 270-300°C (520-570°F) are typical.

Mold Temperatures

In order to obtain maximum dimensional stability, surface appearance, and cycle, the following mold temperatures are recommended for Rynite® PET resins:

Part Thickness, in (mm)	Preferred Minimum* Mold Temperature, °C (°F)
0.030 (0.75)	110 (230)
0.060 (1.5)	105 (220)
0.125 (3.1)	100 (210)
0.250 (6.3)	90 (190)

Note: When mold temperatures below 90°C (190°F) are used, the initial warpage and shrinkage will be lower, but the surface appearance will be poorer and the dimensional change will be greater when parts are heated above 90°C (190°F).

*Subtract 25°F for HP & SST grades.

Operating Conditions

- Rynite® PET resins exhibit higher flow, so injection pressures should be set lower than comparable settings for glass reinforced 6/6 nylon and PBT resins.
- Fast injection speeds (1–4 sec) especially in thin sections.
- The screw speed should be adjusted so that the screw retraction time is about 75% of the available mold closed time.
- The screw RPM should be slow (with little or no back pressure) in order to minimize glass fiber breakage.

- Fast injection speed also improves knitline strength and surface appearance.
- Adequate mold venting will prevent part burning associated with fast fill rates.

Shrinkage Considerations

Shrinkage in crystalline resins such as Rynite® PET are from:

- · Crystallization of the polymer.
- Thermal contraction of the part as it cools to room temperature.
- High mold temperatures and thick part sections.

Causes of part distortion include:

- A high level of glass fiber orientation.
- Poor mold temperature uniformity.
- Large changes in wall thickness of the part.

Note: Glass orientation tends to dominate shrinkage in glass reinforced resins, which results in different shrinkage rates parallel to and perpendicular to the direction of flow.

Safety Considerations

While processing Rynite® PET, all of the potential hazards associated with thermoplastic polymer resins must be anticipated and either eliminated or quarded against by following established industry procedures. Hazards include:

- Thermal burns resulting from exposure to hot molten polymer
- Fumes generated during drying, processing, and regrind operations
- Formation of gaseous and liquid degradation products MSDSs include such information as hazardous components, health hazards, emergency and first aid procedures, disposal procedures, and storage information.

Note: Adequate ventilation and proper protective equipment should be used during all aspects of the molding process. Refer to the DuPont Ventilation Guide for more detailed information.

Start with DuPont

For more information on Engineering Polymers:

(302) 999-4592

For Automotive Inquiries:

(800) 533-1313

U.S.A.

East

DuPont Engineering Polymers Chestnut Run Plaza 713 P.O. Box 80713 Wilmington, DE 19880-0713 (302) 999-4592

Midwest

DuPont Engineering Polymers 100 Corporate North Suite 200 Bannockburn, IL 60015 (847) 735-2720

West

DuPont Engineering Polymers 2030 Main Street, Suite 1200 Irvine, CA 92714 (714) 263-6233

Automotive

DuPont Engineering Polymers Automotive Products 950 Stephenson Highway Troy, MI 48007-7013 (313) 583-8000

Asia Pacific

DuPont Asia Pacific Ltd. P.O. Box TST 98851 Tsim Sha Tsui Kowloon, Hong Kong 852-3-734-5345

Canada

DuPont Canada, Inc. DuPont Engineering Polymers P.O. Box 2200 Streetsville, Mississauga Ontario, Canada L5M 2H3 (905) 821-5953

Europe

DuPont de Nemours Int'l S.A. 2, chemin du Pavillon P.O. Box 50 CH-1218 Le Grand-Saconnex Geneva, Switzerland Tel.: ##41 22 7175111 Telefax: ##41 22 7175200

Japan

DuPont Kabushiki Kaisha Arco Tower 8-1, Shimomeguro 1-chome Meguro-ku, Tokyo 153 Japan (011) 81-3-5434-6100

Mexico

DuPont S.A. de C.V. Homero 206 Col. Chapultepec Morales 11570 Mexico D.F. (011 525) 250-8000

South America

DuPont America do Sul Al. Itapecuru, 506 Alphaville—CEP: 06454-080 Barueri—Sao Paulo, Brasil Tel.: (055-11) 421-8531/8647 Fax: (055-11) 421-8513 Telex: (055-11) 71414 PONT BR

DuPont Argentina S.A. Avda. Mitre y Calle 5 (1884) Berazategui-Bs.As. Tel.: (541) 319-4484/85/86 Fax: (541) 319-4417

The data listed here fall within the normal range of properties, but they should not be used to establish specification limits nor used alone as the basis of design. The DuPont Company assumes no obligations or liability for any advice furnished or for any results obtained with respect to this information. All such advice is given and accepted at the buyer's risk. The disclosure of information herein is not a license to operate under, or a recommendation to infringe, any patent of DuPont or others. DuPont warrants that the use or sale of any material that is described herein and is offered for sale by DuPont does not infringe any patent covering the material itself, but does not warrant against infringement by reason of the use thereof in combination with other materials or in the operation of any process.

CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement," H-50102.

