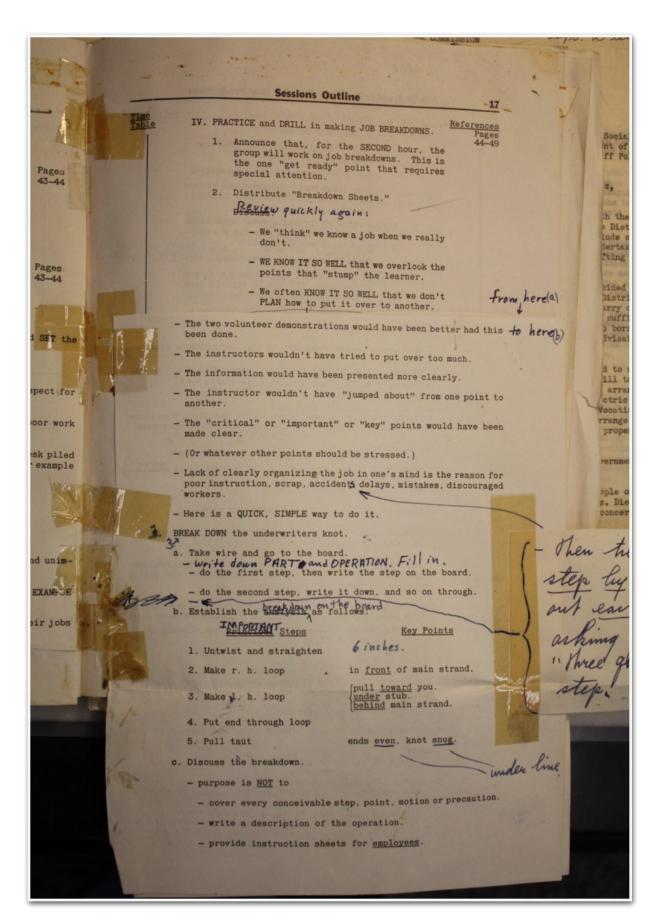

Original 10-hour Sessions

TWI Problem Solving



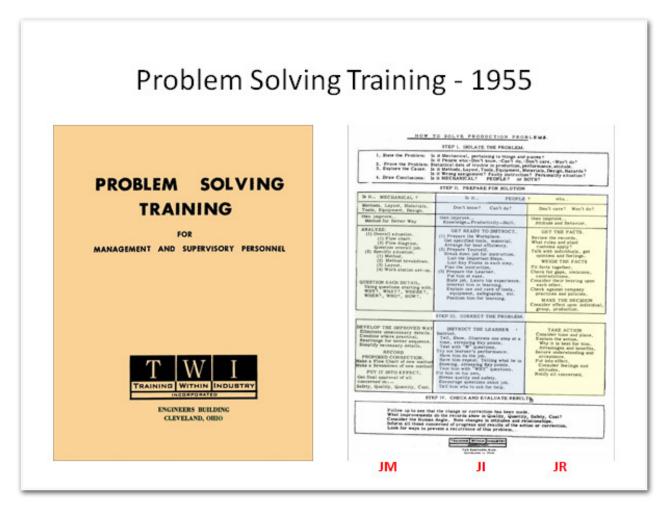
The TWI Programs: Should you be a purist and insist on using the 1944–45 manuals?

MARK WARREN EXPERIENCED MANUFACTURING PROFESSIONAL... PUBLISHED JUN 18, 2017

While all of the programs went through heavy editing during development, they typically had about ten revisions after their national release. This was all done within about 18 months, then the revisions stopped. The editing and revisions were not stopped because the TWI staff thought they had reached *perfection*, but by orders above the TWI headquarters... the programs were 'good enough'. They must now concentrate on solving the problems of production, not improving the TWI programs.

In the last 18–24 months of the government funding of the TWI programs, the leading trainers were forced to do what we would now call 'point kaizen' and not allowed to do what they recognized as full TWI implementations in a facility. They were given a list of

Original example where they were revising the Job Instruction Sessions Outline manual (1942) - Manual part of US Archive collections.


items that still had shortages. Their orders were to review the production process, zero in on the problem area and fix only that specific area, then move on to the next problem on the list. (There are letters in the US Archive collections where the trainers are moaning about this approach and promising themselves that 'after the war' they will go back and do a proper job of 'installing' the TWI programs.)

In January 1946, the original headquarters staff from Washington DC set up the TWI Foundation to continue their research and development of the TWI programs. Immediately they released revisions to the manuals that they were not allowed to do the previous 18 months. The biggest changes were to Job Instruction — moving the time table to session 1, the *learning to* see exercise, and Job Methods — changing the training example to include modifying the layout.

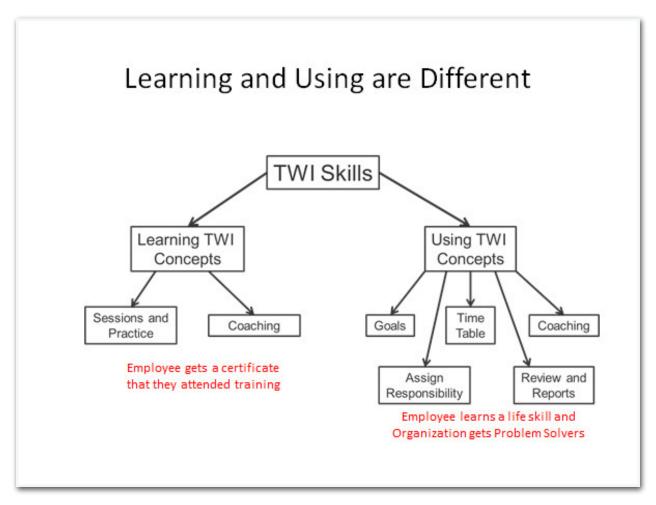
In order to continue the development of the TWI programs the TWI Foundation leaders needed to pass the development forward to others. Their reason was primarily one of age... When they first started the TWI Service in 1940 — Channing Rice Dooley was 65 and Walter Dietz was 63... this would make them 70 and 68 when they started the TWI Foundation! Dooley died a few years later and Dietz continued running the organization into the 1950's.

In the US Archive collections, there are letters to indicate that Dooley and Dietz maintained relationships with a number of people that continued to explore the development of the TWI programs. These would be people like Herbert Doner (teaching JI at the University of Chicago's School of Business), Lowell Mellen (operating the TWI, Inc. consulting company), and Elizabeth (Betty) Huntington of New Zealand's TWI Service.

Herbert Doner is relatively unknown — his contribution was adding the third column in the job breakdown sheet in 1967. Originally the Job Instruction job breakdown only had two — Important Steps and Key Points. The supervisor that was doing the training was 'supposed to know' the reason for each key point. Even though JI clearly states to 'not leave anything to memory' and 'not rely on memory' in the training materials. The Job Methods job breakdown sheet had three columns, so to avoid confusion, JI kept the original 2-column layout for 25 years.

(The highlighting was added to emphasize the three programs.)

Lowell Mellen is probably the best known because his team taught TWI in Japan. It's actually one of his team members (Dale Cannon) that developed the combining of all three of the J programs into a unified problem solving program in 1955. This unified approach is quite similar to how Taiichi Ohno applied the TWI programs within Toyota. *Problems rarely confine themselves to a single TWI skill area.*


The last one, and most active mentoring that lasted for more than 20 years between Betty Huntington and Walter Dietz is the most interesting. Immediately after establishing the TWI Service in New Zealand, they established a small research group to continue the development of the programs... not just the J programs, but the critical support and development that was necessary for effective implementation of TWI. The core of this support material was developed in the US and available only to the trainers at the Regional offices and Headquarters. The last version of their Job Methods

training had finally simplified to process to the point it was easy to use and focused on getting results to resolve problems.

Modern Variations

Most of today's variations to the 5 day program format are for the convenience of the trainer (or to lower the cost), changing the format into 2 or 3 days. Coaching the skills

So, what choices do I have?

at their workplace between the sessions cannot be done when the program is compressed. Nor can the deliberate practice at your workplace to connect the sessions lessons with your work.

The two largest groups that certify TWI trainers do not follow the same format as the TWI Service did in their Institute training. Today's trainers might get a week practicing

with someone experienced (along with several others). The original format was attending the 10-hour session, then practice applying it at least several weeks, then apply for the Institute. Once accepted, you would spend a week going through all of the sessions and then return to the company where you were employed to deliver your first program. Your Institute trainer would attend your sessions and follow you to the shop floor as you coached participants. They would offer feedback on how to improve your sessions. Only after successfully delivering a complete program under the watchful eye of an Institute trainer, would you be certified. In addition, if you did not deliver the training for more than 90 days, you had to complete the certification again.

Your choices...

Option 1

Providing employees with a certificate for a single TWI skill (there are three core skills) only costs the employer a lost week of production and about \$800 per person if done at your own facility.

Option 2

You can *do-it-yourself* with just about the same level as the average certified Job Instruction trainers today. The sessions are scripted, all you need is a little practice.... treat it like practicing for the lead role in your high school play.

Option 3

Or you can create an environment where the employees can learn all the skills. In 2015 a wide variety of companies hosted Dr. Vivek and myself to test if we could teach and apply the TWI skills within 10 days. The goal was to replicate Ohno's improvement curve at Toyota. The companies ranged from limited exposure to lean to those winning quality awards from Japan and connections with Toyota. The results in terms of problems found and solved are similar. This approach has since been tried in many more countries as we continue to learn and simplify the program.

Example Results — 1 to 2 weeks

Tail light assembly breaking

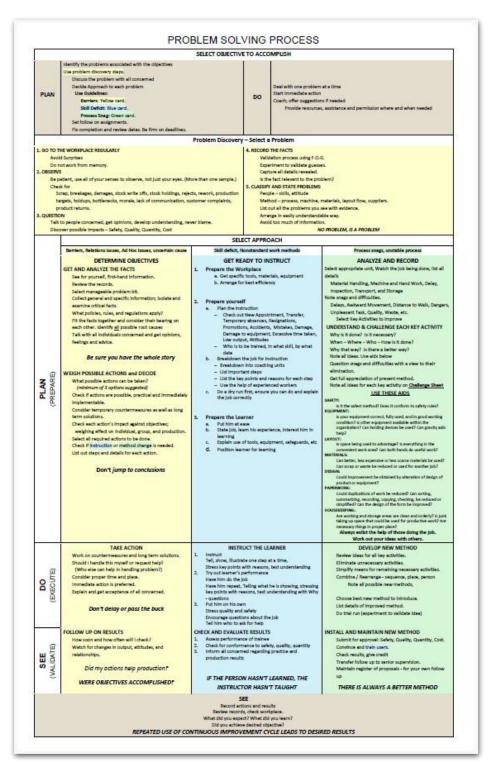
- New model (18 months old)
 - Scrapping about \$5,000 per month after rework
 - · Had been a QC project for about 6 months
 - Lots of process data, no actions
 - Light assembly not capable to tolerances
 - Supplier working to drawing that did not include assembled tolerances
 - Mounting bracket process not capable
 - Faulted supplier of subassembly that was welded to frame
 - » Issue with fixture holding subassembly at frame welding
 - Third issue discovered in side panel assembly
 - Locating tab irregular
 - » Fixture in robotic welding operation not holding tab tight in place during welding
 - · Maintenance repaired problem fixtures
 - Engineering and Supplier met the next day at the assembly line to see the problems
 - Temporary sorting was developed
 - Assembly process modified
 - Rework reduced from average of 130 per day to 4 with temporary measures

Motorcycle Plant

- · Oil on floor near stamping press
 - Experiment to wipe oil from strip leaving stamping press
 - 30 minutes cleaning time per shift reduced to 5 minutes
 - · Deployed at all presses
- Machine changeover deep draw stamping
 - Experiment with shims to eliminate adjustments
 - · 8 hour changeover to less than 5 minutes
- Mixing of components found in assembly
 - Experiment to reduce mixing at critical step
 - 50% improvement. Taking steps to further reduce
- Low machine OEE on bottleneck process
 - Found major contributor was absenteeism and supervisor unaware of critical role in plant output
 - Developed plan to staff bottleneck operation even with absences (operators now aware of critical need to keep this process running)

Chain manufacturing operation

- Casting porosity can be detected only after final machining
 - Engineering claimed solution could only be determined if they could a special modeling software to identify cause.
 - Go see, observe, get facts...
 - Critical placing of "chillers" in the mold was highly irregular
 - » JBS developed
 - » Operators trained
 - Porosity failures reduced about 80%


Large Iron Casting operation (5 ton part)

- Oil pump assembly
 - Parts machined, assembled and tested
 - Demand 500 per day
 - Current production is 280-350 per day (working 3 shifts they work weekends and still can't keep up)
 - Manufacturing Engineering solution \$300,000 machining center ordered
 - Fact finding:
 - » Current machine sometimes idle
 - · Supplier problems and internal receiving
 - Improved supplier communication supplier to inspect critical areas where defects were found after machining
 - Internal inspection process modified to remove delays
 - · Fixture defects repaired to eliminate scrap caused by fixture
 - · Transfer process to assembly in smaller batches
 - · Modified testing sequence to increase capacity
 - » Results: 500 per day achieved on two shifts, no weekend overtime

Automotive Component Supplier

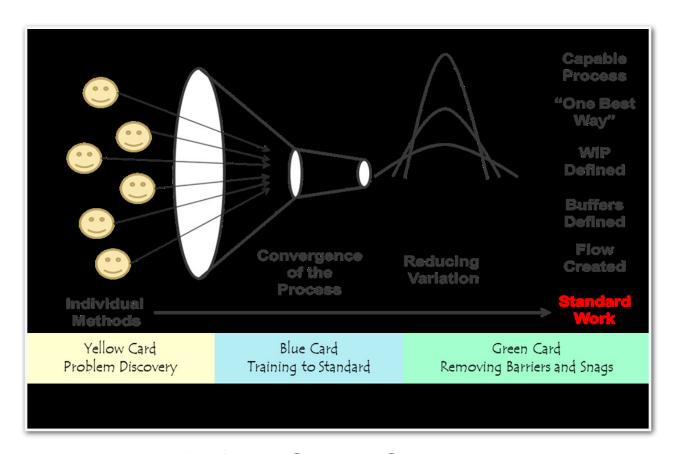
Similar results have been achieved by staff in service operations (hospitals) and light

manufacturing (sewing operations). We follow a standard road-map to approach problem solving; from the discovery and selection of which problem to solve to the training of staff to the 'one best way' to experimenting as a way to validate ideas for improvements.

While the coaching has been simplified to the point where significant improvements can happen in the first week, the depth of skill to sustain takes longer. Critical to success is leadership participation in daily practice to trigger the habit building process.

What you can expect...

The first few half-days are spent learning about the TWI skill sets and fact finding by the small teams of about 5 people. We divide the time between the conference room and the work area. Once people realize their overall objective is to create flow, it is easier to identify which problems need to be addressed first. It is typical for the teams to start with production and quality data, then do a validation step to confirm the details of the issue.



For an example, let me share with you my experience withe a compact florescent light bulb manufacturer. The pilot project selected was for the bulb that is made up of 3 U shaped tubes that are bent, then joined before final assembly. There are about a dozen machines the tube must pass through before becoming a light bulb. Each team was assigned a section of the line to investigate.

At the end of day two the teams summarized their findings of the problems

each segment had and identified which problem solved would have the biggest impact. Overall, cracking and breaking of the glass tube was the largest contributor to losses. At first they said they were not that concerned because they always recycled the glass (they ran the tube making facility as well). However, when they began to look at the defect as a disruption to flow, which translated into lost production, their opinions changed.

Day three was spent observing all of the locations that cracked or broke the tubes. Ideas were proposed, experiments to test the ideas were developed and a to-do list was handed off to the second shift. On day four, they confirmed that most of the experiments had worked and the breakage had dropped 70%... the equivalent of an extra hour of production each day!

Problem Solving Sequence

While these examples show the possibility of dramatic improvements in a very short period of time, the real value happens when you can develop these problem solving habits into the normal day-to-day behaviors of your leaders. This is a daily effort, not events or special jobs. This is when the number of improvements will number in the thousands after a few months... most will not be as dramatic as the first big wins.