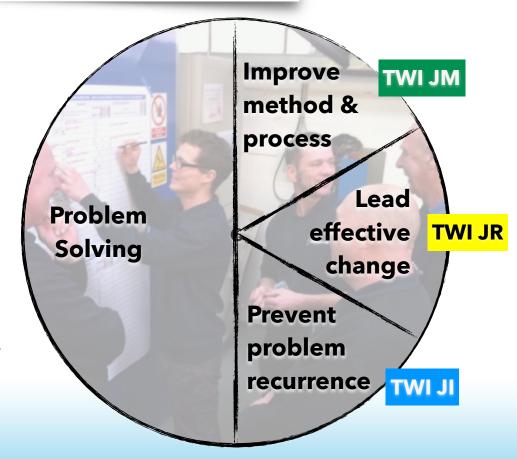


TWI PROBLEM SOLVING

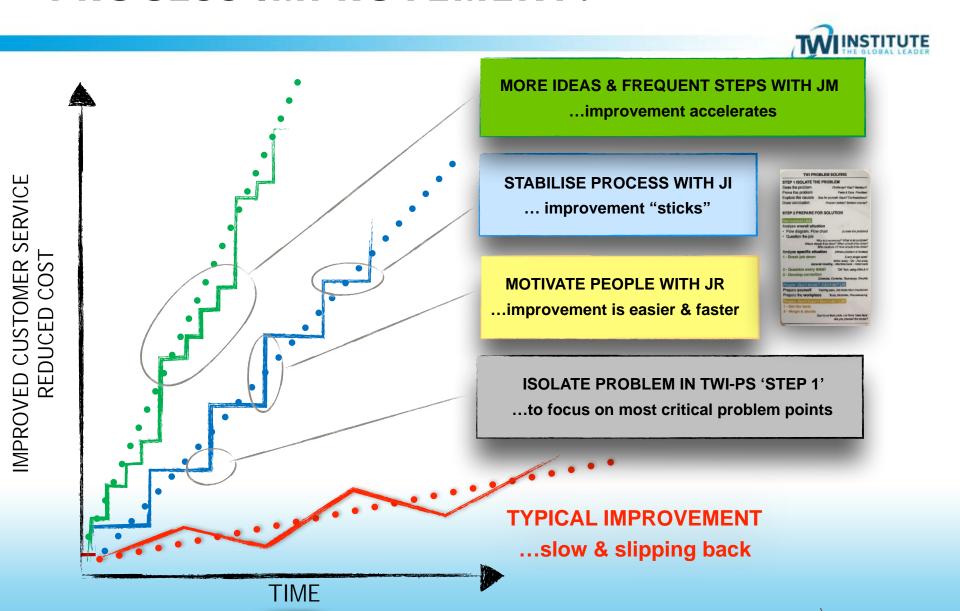
COMBINING THE POWER OF THE J PROGRAMS

WHY USE TWI PROBLEM SOLVING?

"Quickly resolve complex problems involving process and people to get rapid, sustainable business results."



Combines sound industrial engineering foundation with world-class people skills


Unleashes the full power of the three TWI "J" Programs

Fully integrates within A3 problem solving & Kata coaching framework

Delivers outstanding **business results faster** by leveraging the full potential of operators and front-line leaders

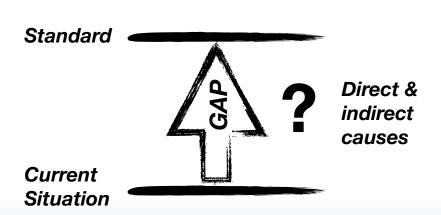
HOW DOES TWI-PS ACCELERATE PROCESS IMPROVEMENT?

WHAT IS A PROBLEM?

A supervisor has a **problem** when the **work assigned** fails to produce the **expected results**.

A problem is a **gap** between what **should be** happening (standard) and what **is actually** happening (current situation).

The elements of a work assignment


4 Ms

MATERIALS

MACHINES

METHOD

MANPOWER

TWI PS - 4 STEP METHOD

Step 1: **Isolate** the problem

Step 2: **Prepare** for solution

Step 3: Correct the problem

Step 4: Check and evaluate results

Isolate the problem points
Identify the direct & indirect causes
Use the appropriate solution course: JI, JM, JR
... to close the GAP

FIRST, ISOLATE THE PROBLEM...

1. STATE THE PROBLEM

(Gap, variation)

2. GIVE PROOF OR EVIDENCE

(Facts & data)

3. EXPLORE THE CAUSES

(Direct & indirect causes)

4. DRAW CONCLUSION

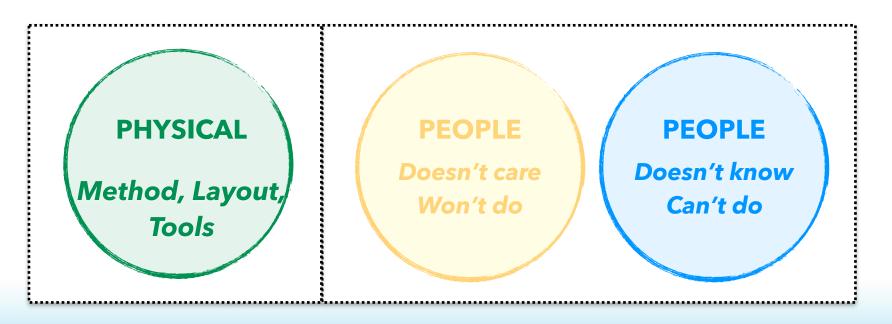
(Problem Points? Solution Course?)

١

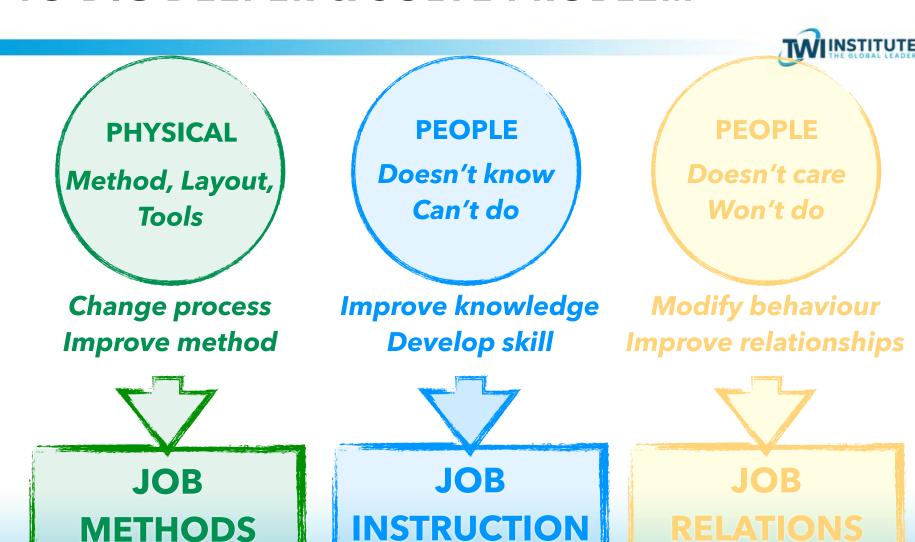
EXPLORE THE CAUSES

CHAIN OF CAUSATION

INDIRECT CAUSES WHAT IS HIDDEN FROM VIEW	DIRECT CAUSES WHAT WE CAN SEE	EVIDENCE	PROBLEM	IMPACT
Change of setting done during break, operator unaware Supervisor asked everyone to raise output to make targets Setter did not know spindle speed affects hole size	Parts with oversized holes, inspector stopped move Operator drilled holes at higher spindle speed Setter increased machine spindle speed	1000 parts made 600 stuck in aisle Many plates with oversized holes	when operator drilled angle plates as usual, he drilled many oversized holes, and inspector stopped 3 pans of plates from being moved to Dept. B'.	Finger injured and operator in pain Production at risk


PROBLEM POINTS: Most significant or influential causes, direct or indirect.

2 BROAD CATEGORIES OF PROBLEMS


2 CATEGORIES OF PROBLEM

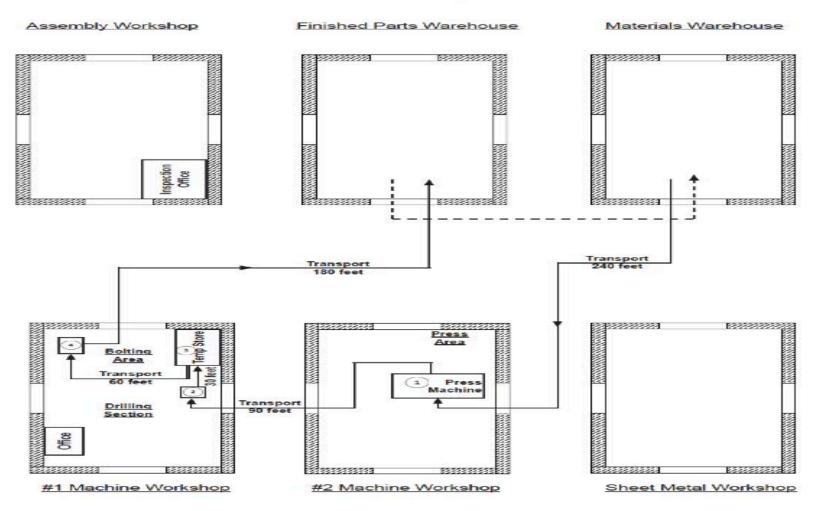
- PHYSICAL / MECHANICAL
- PEOPLE

...THEN, PICK SOLUTION COURSE TO DIG DEEPER & SOLVE PROBLEM

٨

PHYSICAL PROBLEMS: ANALYSE OVERALL SITUATION (FLOW CHART)

ANALYSE OVERALL SITUATION / SPECIFIC SITUATION


Produ	AILS OF METHOD uct flow chart: does the PRODUCT do?		OBSERVATIONS Conditions or acts that add to the gap?		W CHA the PR	RT ODUCT	flow?	·
Job N do?	Methods breakdown: What does the WORKER		Method, Variation, Machine, WIP, Defects, Ergonomics	0	→		D	∇
1	Materials Warehouse Move to Press Workshop			•	•	•	•	•
2		240'		•		•	•	•
3	Cut and Stamp				•	•	•	•
4	Move to Drilling Section	90'		•	>	•	•	•
5	Cut Hole				•	•	•	•
6	Move to temporary storage	30'		•	1	·	•	•
7	Wait for inspection	25min		•	•	·	>	•
8	Inspect			•	•	<i>/</i>	•	•
9	Move to Bolting Area	60'		•	<i></i>	•	•	•
10	Bolt on				•	•	•	•
11	Move to Finished Parts Store	180'		•	•	·	•	•
12	Finished Parts Warehouse			•	•	•	·	•

٨

PHYSICAL PROBLEMS: OVERALL SITUATION (FLOW DIAGRAM)

Flow Diagram

SUMMARY: TWI PS - 4 STEP METHOD

1. ISOLATE THE PROBLEM

Proof & evidence
Identify Problem Points
Select SOLUTION COURSE

Actual

Actual

Direct & indirect causes

2. PREPARE FOR SOLUTION

PROCESS
Fit for purpose?

JM
Improve method

PEOPLE

Doesn't know Can't do

Doesn't care Won't do

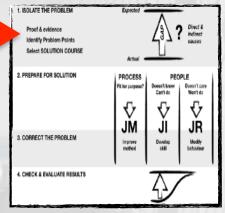
JI

Develop skill

Modify behaviour

3. CORRECT THE PROBLEM

4. CHECK & EVALUATE RESULTS


TWI-PS EXAMPLE - QUALITY LABORATORY

BACKGROUND & BRIEF

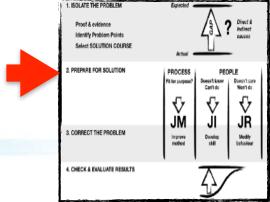
- Quality lab **headcount reduction by 2** (incl. micro biologist) affecting day & night shift. 24/5 operation.
- Some tasks done previously only by micro biologist
- Team members complain about excess workload & appear demotivated & anxious
- Need to ensure continued smooth operation

EXAMPLE - ISOLATE THE PROBLEMNOT QUITE WHAT WE THOUGHT... AND MORE COMPLEX

Physical/ Mechanical:

- High variation in week startup workload
- Week startup registrations incomplete during peaks
- Periodic tasks often not on time

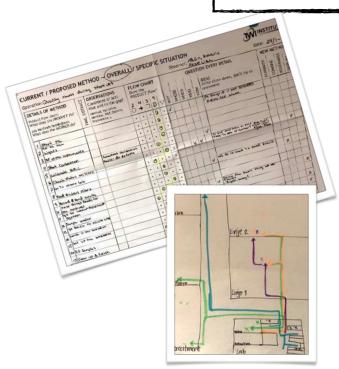
People - Doesn't know/ Can't do


- Performance variation across team
- Team member skill limits collaboration

People - Doesn't care/ Won't do

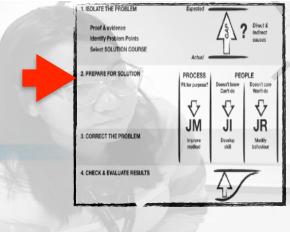
- Poor cooperation between sub-teams
- One operator reluctant to take on new tasks

EXAMPLE - PREPARE FOR SOLUTION


FOCUS ON: WHAT MUST WE DO?

Physical/ Mechanical: Detailed study of overall situation

Start-up workload OK for 2 ops, if organised correctly.

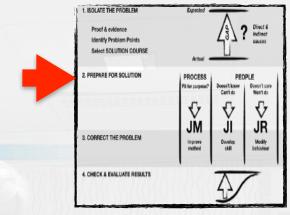

Often non-essential activities done on Friday, whilst urgent ones (prep) left for Sunday.

- Detailed method for Friday, other tasks: mid-week
- Visualise task schedule & completion

EXAMPLE - PREPARE FOR SOLUTION

FOCUS ON: WHAT MUST WE DO?

People - Doesn't Know/ Can't Do:


Training Timetable

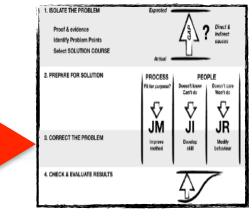
Only half of operators can do micro testing (many samples = high work content)

- Train team on new method (Friday)
- Cross-train team: micro

EXAMPLE - PREPARE FOR SOLUTION

FOCUS ON: WHAT MUST WE DO?

People - Doesn't Care/ Won't Do:


Detailed JR analyses for team and individuals

2 sub-teams perpetuated by specialised tasks & meetings.

Poor collaboration on some shifts.

- Joint team meetings to drive improvement
- Individual development plans for 2 operators

EXAMPLE - CORRECT THE PROBLEMINCLUDING TWI JOB INSTRUCTION

New Friday schedule tested, timed & improved with input of whole team

Visual boards designed & introduced

JI Breakdowns written & operators trained

New leadership routines implemented

Why important: For cear	or cours					
Parts: ACCUMENT ST.	ET TO THE TOTAL TON AM	Mirkani Bankt				
Parts: ACCUPET, STORE PIPETTE, 100 ML NAIGHOUSE, PROUNT TOOLS & Moterials:						
IMPORTANT STEPS	KEY POINTS	REASONS				
A logicul segment of the operation when something inspens to advance the work, U.L.L.T.	Anything in a step that might— 1. Melse or break the jeb 2. Injure the worker 3. Melse the work assists to do, i.e. heack*, "trick", special thinling, bit of special information \(\psi_0.00\).	Rassons for the key points				
1 FIND MOWERS TOME PIRSTER STREETS MASSIVE CONTRACTOR PERIMETRE TOTS	1. COLLINET PROFITE TO SHE 2. PRETTE PONDITING COUDIN 3. MUSCHETING HOLDING TSCHOOLE	I DUT INJURE YOURS SEE				
2. Mc Asivene ciguio	2. HAVE TO MALCINE WAS BOSTOM OF VEHICUS !	NOWME. TO HTT MINISTERS				
3. MIXER GANGE	HOLDING THE POLICE AND HOLDING TO THE THIRD A WESTERN STIMES	1. 110 CEMENGE. 2. TO MIX CORRECT. 3. GMURES JOUT CON IS PROPERLY MIS				
4. PLANS PROTES TO CLEAN - RETIONS & CLEAN.	1. THISTING PLACED 2. CAREFULT	/				
	3.3					

Denis Becker dbecker@twi-institute.org +44 (0)771 479 480 7

445 ELECTRONICS PARKWAY, STE. 102 LIVERPOOL, NEW YORK 13088 +1.315.412.0303 INFO@TWI-INSTITUTE.ORG