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Introduction 
 
NHSScotland routinely collects a vast array of data from healthcare 
processes. The analysis of these data can provide invaluable insight into the 
behaviour of these healthcare processes. 
 
Statistical Process Control (SPC) techniques, when applied to measurement 
data, can be used to highlight areas that would benefit from further 
investigation. These techniques enable the user to identify variation within 
their process. Understanding this variation is the first step towards quality 
improvement. 
 
There are many different SPC techniques that can be applied to data. The 
simplest SPC techniques to implement are the run and control charts. The 
purpose of these techniques is to identify when the process is displaying 
unusual behaviour. 
 
The purpose of this guide is to provide an introduction to the application of run 
charts and control charts for identifying unusual behaviour in healthcare 
processes. SPC techniques are a tool for highlighting this unusual behaviour. 
However, these techniques do not necessarily indicate that the process is 
either right or wrong – they merely indicate areas of the process that could 
merit further investigation.  

 
History of SPC 
 
1928 saw the introduction of the first Statistical Process Control (SPC) Charts. 
Commissioned by Bell Laboratories to improve the quality of telephones 
manufactured, Walter Shewhart developed a simple graphical method – the 
first of a growing range of SPC Charts. 
 
Understanding the causes of variation within an industrial process proved 
indispensable as actions could be taken to improve process and output. In the 
1950’s, with the effective use of SPC, Deming converted post war Japan into 
the world leader of manufacturing excellence. 
 
This approach is increasingly being applied in healthcare by thinking of 
healthcare systems as processes. As well as providing a basis for quality 
improvement within healthcare, SPC Charts also offer alternative methods of 
displaying data. 
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1. Understanding Variation 
 
1.1 Types of Variation 
 
Variation exists in all processes around us. For example: 
 
• Every person is different 
• No two snowflakes are identical 
• Each fingerprint is unique 
 
The two types of variation that we are interested in are ‘common cause’ and 
‘special cause’ variation. 
 
 
Common Cause 
All processes have random variation - known as ‘common cause variation’. A 
process is said to be ‘in control’ if it exhibits only common cause variation i.e. 
the process is completely stable and predictable. 
 
 
Special Cause 
Unexpected events/unplanned situations can result in ‘special cause 
variation’. A process is said to be ‘out of control’ if it exhibits special cause 
variation i.e. the process is unstable. 

 
SPC charts are a good way to identify between these types of variation, as we 
will see later. SPC charts can be applied to both dynamic processes and 
static processes. 
 
 
Dynamic Processes 
A process that is observed across time is known as a dynamic process. An 
SPC chart for a dynamic process is often referred to as a ‘time-series’ or a 
‘longitudinal’ SPC chart. 
 
 
Static Processes 
A process that is observed at a particular point in time is known as a static 
process. An SPC chart for a static process is often referred to as a ‘cross-
sectional’ SPC chart.  

 
A cross-sectional SPC chart is a good way to compare different institutions. 
For example, hospitals or health boards can be compared as an alternative to 
league tables as we will see later. 
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Example 1 
Coloured beads pulled from a bag – a dynamic process 
 
A bag contains 100 beads that are identical - except for colour. Twenty of the 
beads are red and 80 are blue. Scoopfuls of 20 are repeatedly drawn out, with 
replacement, and the number of red beads in each scoop is observed. Figure 
1 shows the result of 25 scoops. 
 
Figure 1 Number of red beads observed in 25 scoops 

Twenty of the 100 beads in the bag are red, which means that the proportion 
of red beads in the bag is 1/5. Therefore, if a sample of 20 is drawn each time, 
we expect four of the beads in the sample to be red, on average. 
 
In figure 1 the plotted points oscillate around four. 
 
In general, every time a sample of 20 is drawn you won’t necessarily observe 
four reds. The number that you observe will vary due to random variation. The 
random variation that you see in the graph above is common cause variation 
as there is no unusual behaviour in this process. 
 
If a sample of 20 beads were drawn from the bag and 10 or more red beads 
were consistently being observed then this would indicate something unusual 
in the process i.e. special cause variation which may require further 
investigation. 
 
 
The example above is a simplification of Deming’s red bead experiment 
where the red beads represent an undesired outcome of the process. This 
process is not dissimilar to the many situations that often occur in healthcare 
processes. This is how data, which is collected over time, is typically 
presented and it shows the behaviour and evolution of a dynamic process. 
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Example 2 
Coloured beads pulled from a bag – a static process 
 
There are 10 groups in a room and each group has a bag that contains 20 
beads – four of these beads are red. Each group is required to draw out 10 
beads and the number of red beads in each groups’ scoop is observed. 
Figure 2 shows the result from the 10 groups. 
 
Figure 2 Number of red beads observed in each groups’ scoop 

The proportion of red beads in the bag is again 1/5. Therefore, if each group 
draws out a sample of 10, we expect two of the beads in the sample to be red, 
on average. 
 
In figure 2 the plotted points oscillate around two. 
 
The variation in this sample is again random variation (common cause 
variation). 
 
This example illustrates how data is typically presented at a single point in 
time and it is an example of a static process. This situation arises when data 
is analysed across units. For example, NHS boards, GP practices, surgical 
units etc and is known as a cross-sectional chart. 

 
1.2 Sources of Variation 
 
Variation in a process can occur through a number of different sources. For 
example: 
 
• People  - Every person is different 
• Materials  - Each piece of material/item/tool is unique 
• Methods  - Signatures for example 
• Measurement - Samples from certain areas etc can bias results 
• Environment - The effect of seasonality on hospital admissions 
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1.3 Causes of Variation 
 
W. A. Shewhart recognised that a process can contain two types of variation. 
Variation contributable to random causes and/or to assignable causes. 
 

 
 
 
 
 
 

W. E. Deming later derived the expressions ‘common cause variation’ 
(variation due to random causes) and ‘special cause variation’ (variation due 
to assignable causes). 
 
Common cause variation is an inherent part of every process. Generally, the 
effect of this type of variation is minimal and results from the regular rhythm of 
the process. 
 
Special cause variation is not an inherent part of the process. This type of 
variation highlights something unusual occurring within the process and is 
created by factors that were not part of the process’ design. However, these 
causes are assignable and in most cases can be eliminated. 
 
If common cause is the only type of variation that exists in the process then 
the process is said to be ‘in control’ and stable. It is also predictable within set 
limits i.e. the probability of any future outcome falling within the limits can be 
stated approximately. Conversely, if special cause variation exists within the 
process then the process is described as being ‘out of control’ and unstable. 
 
Summary 

1 Variation exists everywhere 
  2 Processes displaying only common cause variation are 
   predictable within statistical limits 
  3 Special cause variation should be eliminated if possible 

 
1.4 Tools for Identifying Process Variation 
 
Now we know that variation exists in all processes we can proceed to identify 
which type of variation is present. One method of identifying the type of 
variation present is by using SPC charts. Originally developed for use in 
manufacturing, many applications are now involving healthcare processes for 
quality improvement purposes. The following section explains the 
fundamentals of SPC in more detail. 

Variation in a 
process due to 

Random causes 
(common causes) 

Assignable causes 
(special causes) 
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2. SPC Charts – Dynamic Processes 
 
Statistical Process Control (SPC) Charts are essentially: 
 
• Simple graphical tools that enable process performance monitoring 
• Designed to identify which type of variation exists within the process 
• Designed to highlight areas that may require further investigation 
• Easy to construct and interpret 
 
Two of the most popular SPC tools in use today are the run chart and the 
control chart. They are easy to construct, as no specialist software is required. 
They are easy to interpret, as there are only a few basic rules to apply in order 
to identify the variation type without the need to worry too much about the 
underlying statistical theory. 
 
The following sections step through the construction and interpretation of run 
charts and control charts. 
 
2.1 Constructing a Run Chart 
 
Run Chart 
A time ordered sequence of data, with a centreline drawn horizontally through 
the chart. A run chart enables the monitoring of the process level and 
identification of the type of variation in the process over time.  
 
The centreline of a run chart consists of either the mean or median. The mean 
is used in most cases unless the data is discrete. 
 
Discrete Data 
Where the observations can only take certain numerical values. Almost all 
counts of events e.g. number of patients, number of operations etc  
 
Continuous Data 
These data are usually obtained by a form of measurement where the 
observations are not restricted to certain values. For example - height, age, 
weight, blood pressure etc.  
 
Steps to create a Run Chart 
1 Ideally, there should be a minimum of 15 data points. 
2 Draw a horizontal line (the x-axis), and label it with the unit of time. 
3 Draw a vertical line (the y-axis), and scale it to cover the current data, 

plus sufficient room to accommodate future data points. Label it with 
the outcome. 

4 Plot the data on the graph in time order and join adjacent points with a 
solid line. 

5 Calculate the mean or median of the data (the centreline) and draw this 
on the graph. 
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Example 1 (continued) 
Coloured beads pulled from a bag – a dynamic process 
 
The run chart for this data is shown in figure 3. 
 
Figure 3 Run chart for the number of red beads observed in 25 scoops 

It is a good idea to state which measure has been used for the centreline. 
 
As the data for the above example (number of red beads observed) is 
discrete, the median has been used to construct the centreline. 
 
 
The following definitions are useful before proceeding onto the rules for 
detecting special variation within run charts and later, control charts. 
 
Useful Observations 
Those observations that do not fall directly on the centreline are known as 
‘useful observations’. The number of useful observations in a sample is equal 
to the total number of observations minus the number of observations falling 
on the centreline.  
 
In the above example, four observations fall on the centreline. Therefore, 
there are 25 – 4 = 21 useful observations in the sample.  
N.B. If the mean (=3.88) had been used for the calculation of the centreline, 
as no observations would have fallen on the centreline, the number of useful 
observations would have been 25 (the number of observations in the sample). 
 
Run 
A sequence of one or more consecutive useful observations on the same side 
of the centreline. The observations falling directly on the centreline can be 
ignored. 
 

Median = 4 
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Example 1 (continued) 
Coloured beads pulled from a bag – a dynamic process 
 
The run chart for this data is shown in figure 4. 
 
Figure 4 Run chart for the number of red beads observed in 25 scoops with 
 runs highlighted in red 

 
 
Trend 
A sequence of successive increases or decreases in your observations is 
known as a ‘trend’. An observation that falls directly on the centreline, or is the 
same as the preceding value is not counted. 
 
From the run chart in example 1, the longest trend is of length 3. One of these 
trends occurs between observations 13 and 16 where there is an increasing 
sequence of length 3 (observation 14 is not counted since it falls on the 
centreline). 

 
2.2 Interpreting a Run Chart 
 
A run chart is a useful tool for identifying which type of variation exists within a 
process. 
 
The following rules can be applied to the run chart for determining the type of 
variation in the process. 
 
 
 
 
 

Median = 4 
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Run Chart Rules 
Identifying Special Cause Variation  
 
Number of Runs 
If there are too few or too many runs in the process. The table below is a 
guide based on the number of useful observations in your sample. 
Shift 
If the number of successive useful observations, falling on the same side of 
the centreline, is greater than 7. 
Trend 
If the number of successive useful observations, either increasing or 
decreasing, is greater than 7. 
Zig-Zag 
If the number of useful observations, decreasing and increasing alternately 
(creating a zig-zag pattern), is greater than 14. 
Wildly different 
If a useful observation is deemed as wildly different from the other 
observations. This rule is subjective and is easier to identify when interpreting 
control charts. 
Cyclical Pattern 
If a regular pattern is occurring over time – for example a seasonality effect. 
  
 
Number                                                             Number           
of useful              Too few       Too many        of useful             Too few       Too many   
observations       runs             runs                observations       runs            runs 
 

15      4                  12          28  10       19 
16      5                  12          29  10       20 
17      5                  13          30  11       20 
18      6                  13          31  11       21 
19      6                  14          32  11       22 
20      6                  15          33  11       22 
21      7                  15          34  12       23 
22      7                  16          35  13       23 
23      8                  16          36  13       24 
24      8                  17          37  13       25 
25      9                  17          38  14       25 
26      9                  18          39  14       26 
27      9                  19          40  15       26 
 
The rules listed above are purely guidelines. Some textbooks may quote 
different sizes of trends, shifts and zig-zags. The above are standard to the 
work that is carried out within the Clinical Indicators Support Team (CIST) and 
ISD wide but their primary intention was for applications in industry. Although 
SPC lends itself well to healthcare processes, healthcare processes deal with 
lives. With this in mind, common sense is often the best guideline - SPC 
charts will illustrate the variation within your process but if fewer observations 
in a trend, shift or zig-zag etc is unusual behaviour in your process then this is 
just as good an indication of special cause variation and is therefore worth 
investigating. 
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2.3 Constructing a Control Chart 
 
Control Chart 
A time ordered sequence of data, with a centreline calculated by the mean. 
Control charts bring the addition of control limits (and warning limits – 
optional). A control chart enables the monitoring of the process level and 
identification of the type of variation in the process over time with additional 
rules associated with the control (and warning) limits. 
 
Steps to create a Control Chart 
1 First, select the most appropriate control chart for your data, which is 

dependent on the properties of your data. See flow chart. 
2 Proceed as for the run chart, using the mean as the centreline. 
3 Calculate the standard deviation (sd) of the sample using the formula 

listed in the appendix (for appropriate chosen control chart). 
4 Calculate the control limit: 
   centreline±(3*sd) 
5 Calculate the warning limits (optional): 
   centreline±(2*sd) 
 
Standard Deviation (sd) 
The spread of the observations. For example, if there is a large amount of 
variation between observations then the sd will be bigger than the sd for 
observations more tightly packed together (i.e. with less variation). 
 

Control Chart Types 
Selecting an appropriate control chart for your data 
 
   Continuous Poisson   Binomial 
 

X   1 observation -    - 
X-bar   1+observation -    - 
c   -   Constant AoO  - 
u   -   Heterogeneous AoO - 
np   -   -    Constant SoE 
p   -   -    Heterogeneous SoE
    
 

Area of Opportunity (AoO) 
The parameter of each observation – see examples below: 
Constant AoO – Calculating weekly mortality rates for a surgeon that always 
works a 5-day week. 
Heterogeneous AoO - Calculating weekly mortality rates for a surgeon that 
works a variable amount of days each week. 
 
Sum of Events (SoE) 
The denominator of each observation – see examples below: 
Constant SoE – Calculating the number of weekly admissions within a set 
population where the population does not change over a given time. 
Heterogeneous SoE - Calculating the number of weekly admissions within a 
population that does change over time. 
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Poisson 
Data that has a Poisson distribution is discrete and is based on events 
occurring over time (or space) at a fixed rate on average, but where each 
event occurs independently and at random. For example, the number of new 
hip fracture admissions. 
 
Binomial 
Data that has a Binomial distribution is discrete and is based on data with only 
two possibilities e.g. the probability of being dead or alive, male or female etc.  
 
 

Data type? 

Data is 
continuous 

Data is 
discrete 

Is there more 
than one 

observation per 
subgroup? 

Are the number 
of observations 

countable? 

Yes YesNo No

Is the AoO 
equal? 

Is the SoE 
constant at 
each time 

point? 

No No YesYes

Xbar-chart X-chart c-chart u-chart p-chart np-chart 
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Example 1 (continued) 
Coloured beads pulled from a bag – a dynamic process 
 
The best type of control chart to use for the data below would be either an np-
chart (to measure the number of red beads in the 25 scoops) or a p-chart (to 
measure the proportion of red beads in the 25 scoops). 
 
Below are the steps to creating a p-chart (see appendix). 
 
Where: 
 n = number of beads drawn in each scoop 
 p = number of red beads observed (success) 
 
For this process: 

Mean (x)  = Σ(p/n)  = 97/500 
Rate (r)  = p/n   = 3/20, 5/20, 2/20, 6/20 etc 
SD   = sqrt((x*(1-x))/n) = sqrt((97/500*403/500)/20) 

 
Control Limits  = x ± 3*SD = 0.194 ± 3*0.088421 etc 
Warning Limits  = x ± 2*SD = 0.194 ± 2*0.088421 etc 

 
Figure 4 p chart for the proportion of red beads observed in 25 scoops 

In this case the lower control and warning limits have been set to the 
maximum value of either the formula (given above) and zero, as the 
proportion of red beads cannot take a value below zero. When dealing with 
percentages, in most cases, the upper control and warning limits can be dealt 
with in the same way (i.e. the minimum value of the formula and 100). 
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2.4 Interpreting a Control Chart 
 
The same rules for identifying special cause variation in run charts also apply 
to control charts, with the addition of two extra rules. 
 
Control Chart Rules 
Additional rules for identifying Special Cause Variation  
 
Control Limits 
If there is one or more observation outwith the control limits. 
Warning Limits 
If there are two successive observations outwith the same warning limits. 
 
The setting of control limits and warning limits are an attempt to balance the 
risk of committing two possible types of error: 
 
• Type I – False positives 
• Type II – False negatives 
  
Type I 
Identifying special cause variation when there is none.  
As the limits are set at 3 standard deviations from the centreline, only 99.7% 
of our observations are expected to fall within the limits (and 95% for warning 
limits) if the process is stable. This means that 3 in 1000 (and 50 in 1000) 
observations are expected to fall outside the control limits even when the 
process is stable. 
 
Type II 
Not identifying special cause variation when there is.  
This occurs when action is not signalled for an observation that falls within the 
limits when the process is actually out of control. 
 
As mentioned earlier, the rules for identifying special cause variation are 
guidelines and may be altered in light of the process that is being 
investigated. Similarly, the boundaries of the control and warning limits can 
also be adjusted.  
 
The combined risk of committing Type I and Type II errors is minimised when 
the control limits are set at 3 standard deviations from the centre line (Carey 
and Lloyd, 1995) however in some cases this may be deemed as too 
conservative. For example, if poor surgical performance is the process that is 
being investigated, in order to increase the chances of identifying possible 
aberrant practice, it may be beneficial to choose tighter limits. 
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3. SPC Charts – Static Processes 
 
SPC Charts are most typically plotted over time for a single process. 
However, it is also possible to construct SPC Charts at a static point in time 
for a process carried out by multiple institutions (e.g. NHS Boards, Hospitals 
etc), which are often referred to as cross-sectional charts.  
 
The cross-sectional chart that we are going to cover is one of the most 
common SPC charts for static processes and is known as a funnel chart due 
to the fact that the control limits take the shape of a ‘funnel’. 
 
3.1 Constructing a Funnel Chart 
 
Funnel Chart 
SPC Chart for cross-sectional data at a particular point in time. The rate of the 
process (e.g. mortality rate, survival rate etc) is plotted on the vertical axis and 
the denominator (i.e. population, number of admissions etc) is plotted on the 
horizontal axis. The centreline is calculated by the mean. Generally, only 
control limits are calculated, as the rule for warning limits does not apply to 
cross-sectional data. 
 
Steps to create a Funnel Chart 
1 Order the data by the denominator (d) in ascending order. 
2 Calculate proportions (p) for each individual institution and an overall 

proportion (this will be the centreline (c)). 
3 Calculate the standard deviation (sd): 
   sqrt(d* c *(1- c)). 
4 Calculate the control limits (ucl and lcl): 
   c±(3*sd)/d 
 
 

Example 2 (continued) 
Coloured beads pulled from a bag – a static process 
 
Using the data from example 2 we will now assume that each bag in fact 
contained a variable number of red beads (the total number of all beads in a 
bag is still 20). The table below illustrates the data.  
 

Number of red Number of red beads 
Group  beads per bag (d) observed (obs) 
A  4   2 
B  6   3 
C  5   2 
D  4   4 
E  3   1 
F  2   2 
G  4   3 
H  7   3 
I  8   4 
J  5   1 
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After sorting the data by the denominator (d), in this case the numbers of red 
beads in each bag calculate the proportions (p) and limits (lcl and ucl). 
    
Group  d obs p c sd lcl ucl  
F  2 2 1 0.52 0.71 -0.54 1.58 
E  3 1 0.33 0.52 0.87 -0.35 1.39 
D  4 4 1 0.52 1.00 -0.23 1.27 
G  4 3 0.75 0.52 1.00 -0.23 1.27 
A  4 2 0.5 0.52 1.00 -0.23 1.27 
C  5 2 0.4 0.52 1.12 -0.15 1.19 
J  5 1 0.2 0.52 1.12 -0.15 1.19 
B  6 3 0.5 0.52 1.22 -0.09 1.13 
H  7 3 0.43 0.52 1.32 -0.05 1.09 
I  8 4 0.5 0.52 1.41 -0.01 1.05 
 
We then create a chart using a ‘scatter plot’, where the x-axis values are 
always plotted as the denominator (d). The only other values to plot, against 
the x-axis values, are the rate (r), centreline (c) and the lcl and ucl. 
 
Figure 5 Funnel Chart for the proportion of red beads observed in each 
groups’ scoop 

The graph above indicates that all the groups are in control and do not display 
any cause for concern.  
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3.2 Interpreting a Funnel Chart 
 
The rules for identifying special cause variation in a static process are very 
simple and are identified purely by an observation falling out with the control 
limits. 
 
Funnel Chart Rule 
 
If one of the observations falls outwith the control limits. 
 
If one of the observations does fall outwith the control limits, it is often worth 
investigating that particular process more fully with a control chart over time 
(i.e. dynamic process). 
 
  

4. Alternative SPC Charts 
 
4.1 CUSUM and EWMA Charts 
 
There are many other different types of SPC Charts that may be more 
appropriate for the type of investigation that your process requires. For 
example Cumulative Summation (CUSUM) Charts are more sensitive to small 
shifts than the types of SPC Charts that have been discussed so far. 
 
Likewise, Exponentially Weighted Moving Average (EWMA) Charts, as well as 
being more sensitive to smaller shifts, also have the advantage of taking into 
account past data, which avoids biasing the process variation to the current 
time period. 
 
These charts are not widely used in healthcare as they are more complex to 
construct and more difficult to interpret. There are also very few cases in 
healthcare that would require additional time and resources directed towards 
investigating very small shifts that are most likely an effect of common cause 
variation. However, when used appropriately they can provide useful, 
additional analysis. 
 
4.2 g-charts 
 
The most widely used alternative to the ‘regular’ SPC Charts within the health 
service has been g-charts. These charts measure the number-between 
specific observations and are used for processes with low frequencies. In 
particular, g-charts have been used extensively in monitoring Healthcare 
Acquired Infections (HAIs). 
 
Perhaps best described through the billboards in construction sites that state 
‘x days since the last accident’, g-charts simply look at the number of days, 
patients or catheters etc since the last event of interest e.g. infection. 
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g-charts are interpreted in the same way as the control charts that we have 
already seen i.e. special cause variation is identified when an observation falls 
outwith the control limits and/or when two successive points fall out with the 
warning limits. These type of charts are only applicable with dynamic 
processes but have already proved invaluable throughout hospital wards in 
Scotland that have implemented g-charts to monitor the success of specific 
care bundles. 
 
 
 
 
 

Contacts 
 
For further information on SPC charts visit our website: 
 
www.indicators.scot.nhs.uk 
 
or alternatively you can contact: 
 
Rebecca Kaye 
email: rebecca.kaye@isd.csa.scot.nhs.uk 
tel: (0131) 275 6434 
 
Margaret MacLeod 
email: margaret.macleod@isd.csa.scot.nhs.uk 
tel: (0131) 275 6520 
 
or subscribe to our bulletin (placing ‘add me’ in the subject field) 
email: QIcom@isd.csa.scot.nhs.uk 
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Appendix 
 
In this section you will find the formulae required for constructing a control 
chart for your data, assuming that you have made the most appropriate 
choice of chart.  
 
X-chart 
 
Assume you have m observations, Xi, i =1, 2,…, m. 
 
Calculate the process average,  

∑
=

=
m

i
iXX

1
.  

 
Calculate the absolute moving ranges (MRs) between adjacent observations, 
where 

MR{i,i+1} = |Xi - Xi+1|, i =1, 2,…, m-1. 
 
Calculate the mean range, R , as 
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Set the control limits at 

).662( R.X ×±  

 
c-chart 
 
Assume that you have m observations from a Poisson(μ) distribution, i.e. 

m,1,2,...,   ),Poisson( =iμ~X i  
where: 
 Xi is the number of occurrences for observation i, and  
 μ is the process average. 
 
Since the true process average, μ, is not known, we replace its value by the 
observed process average, which is given by 

∑
=

=
m

i
.iXX

1
 

 
Since it is the number of occurrences that is plotted, i.e. the sequence of 
values, {X1, X2, …, Xm}, we’re required to calculate that standard deviation, 
s, for each Xi, i=1,2,…m. 
 
Since the area of opportunity is constant for all i, s is simply calculated as 

.Xs =  
It is this s that is used for the calculation of the control (and warning) limits. 
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u-chart 
 
As with the c-chart, assume that you have m observations from a Poisson(μ) 
distribution, i.e. 

m.1,2,...,   ),Poisson( =iμ~X i  
 

Since it is the proportion of occurrences that is plotted, i.e. the sequence of 
values, {Y1, Y2, …, Ym}, where iii n/XY = ~ Poisson(μ/ni) and ni is simply a 
scaling constant that allows for the heterogeneity of the area of opportunity, 
we’re required to calculate that standard deviation, s, for each Yi, i=1,2,…m.  
This is given by 

ii nXYs =)( . 
It is this s that is used for the calculation of the control (and warning) limits. 
 
Note that since a different s is required to be calculated for each proportion, 
Yi, i=1,2,…, m, different control (and warning) limits are required to be 
calculated, too. 
 
 
np-chart 
 
Assume you have m observations from a Bin(ni ,p) distribution, i.e. 

Xi ~ Binomial(ni ,p),    i =1, 2,…, m, 
where: 

Xi is the number of non-conforming units for observation i, 
ni is the number of units for observation i, and  
p is the probability of “success”. 

In addition, let 

 unit. conforming-non a obtaining ofy probabilit observed the be 

and units, conforming-non of number mean the be 1

units, conforming-non of sum the be 

 units, the of sum the be 
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Since it is the number of non-conforming units that is plotted, i.e. the 
sequence of values, {X1, X2, …, Xm}, we’re required to calculate the standard 
deviation, s, for each Xi, i=1,2,…m.  This is given by 

.p̂p̂ns i )1( −=  
 
However, since mnnnn L=== 21 , s is simply 

.p̂p̂ns )1( −=  
It is this s that is used for the calculation of the control (and warning) limits. 
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p-chart 
 
As with the np-chart, assume that we have m observations from a Bin(ni ,p) 
distribution, i.e. 

Xi ~ Binomial(ni ,p),    i =1, 2,…, m, 
Since it is the proportion of non-conforming units that is plotted, i.e. the 
sequence of values, {Y1, Y2, …, Ym}, where iii n/XY = , we’re required to 
calculate the standard deviation, s, for each Yi, i=1,2,…, m. This is given by 

. 1,2,...,   )1(
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It is this s that is used for the calculation of the control (and warning) limits. 
 
Note that since a different s is required to be calculated for each proportion, 
Yi, i=1,2,…, m, different control (and warning) limits are required to be 
calculated, too. 


