AMERICAN NATIONAL STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY VARIABLES FOR PERCENT NONCONFORMING

AMERICAN SOCIETY FOR QUALITY 600 NORTH PLANKINTON AVENUE MILWAUKEE, WISCONSIN 53201

AMERICAN NATIONAL STANDARD

SAMPLING PROCEDURES AND TABLES FOR INSPECTION BY VARIABLES FOR PERCENT NONCONFORMING

PREPARED BY ACCREDITED STANDARDS COMMITTEE Z1 SUBCOMMITTEE ON STATISTICS

SPONSOR AND SECRETARIAT
AMERICAN SOCIETY FOR QUALITY

ABSTRACT

Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming is an acceptance sampling system to be used on a continuing stream of lots for AQL specified. It provides tightened, normal, and reduced plans to be used on measurements which are normally distributed. Variation may be measured by sample standard deviation, sample range, or known standard deviation. It is applicable only when the normality of the measurements is assured.

AMERICAN NATIONAL STANDARD: An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether he has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standard. American National Standards are subject to periodic review and users are cautioned to obtain the latest edition.

CAUTION NOTICE: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of publication. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute.

©2003 by ASQ

Copyright protection notice for the ANSI/ASQ Z1.9-2003 Standard.

This Standard is subject to copyright claims of ANSI, and ASQ. Not for resale. No part of this publication may be reproduced in any form, including an electronic retrieval system, without the prior written permission of ASQ. All requests pertaining to the ANSI/ASQ Z1.9-2003 Standard should be submitted to ASQ.

ASQ will consider requests for change and information on the submittal of such requests regarding this Standard. All requests should be in writing to the attention of the Standards Administrator at the address below.

ASQ Mission: The American Society for Quality advances individual and organizational performance excellence worldwide by providing opportunities for learning, quality improvement, and knowledge exchange.

Published by:

ASQ

Guality Press
600 N. Plankinton Avenue
Milwaukee, Wisconsin 53203
Call toll free 800-248-1946
Fax 414-272-1734
www.asq.org
http://audiivpress.asa.org

http://qualitypress.asq.org http://standardsgroup.asq.org E-mail: authors@asq.org

FOREWORD

(This foreword is not a part of Draft American National Standard—Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming, ANSI/ASQ Z1.9-2003)

This revision of ANSI/ASQC Z1.9-1993, "Sampling Procedures and Tables for Inspection by Variables for Percent Nonconforming" was undertaken to allow for aligning the terminology of the standard with the terms of ANSI/ISO/ASQ A3534-2-2004 (to be published), change the term Acceptable Quality Level (AQL) to Acceptance Quality Limit (AQL), change the definition and explanation of AQL, change the Discontinuation of Inspection Rule, and to correct typographical and computational errors within the standard.

The present revision ANSI/ASQ Z1.9-2003 continues to allow complete interchangeability of the tabulated plans with ISO 3951-1, which provided a graphical means for implementation of the plans. ANSI/ASQ Z1.9-2003 is also roughly matched to ANSI/ASQ Z1.4-2003, which corresponds directly to the old military standard MIL-STD-105E. The matching is sufficient to allow inspection under either standard for stated AQLs and inspection levels with reasonably equivalent protection. Tables are given in Section E—Appendix that show differences in protection between ANSI/ASQ Z1.9-2003 and ANSI/ASQ Z1.4-2003. These are for use in critical applications to determine whether moving from one standard to the other is appropriate.

Committee members serving as writers and editors of this standard were:

Herbert C. Monnich, Jr., Chairperson William C. Davis Rudolf G. Kittlitz, Jr. Paul Roediger Edward G. Schilling (This page intentionally left blank)

CONTENTS

		Page
	CTION	
SECTION		SCRIPTION OF SAMPLING PLANS
	Tables:	
	Table A-1	AQL Conversion Table
	Table A-2	Sample Size Code Letters6
	Table A-3	Operating Characteristic Curves for Sampling Plans of Sections
		B, C, and D (Graphs for Sample Size Code Letters B through P) 6
SECTION	B VARIABILITY	UNKNOWN—STANDARD DEVIATION METHOD
Part I	SINGLE SPECIFI	CATION LIMIT32
	Examples:	
	Example B-1	Example of Calculations: Single Specification Limit—Form 1
	Example B-2	Example of Calculations: Single Specification Limit—Form 2
	Tables:	
	Table B-1	Master Table for Normal and Tightened Inspection
		(Single Specification Limit—Form 1)
	Table B-2	Master Table for Reduced Inspection (Single Specification
		Limit—Form 1)
Part II	DOUBLE SPECIF	FICATION LIMIT
10011	Examples:	
	Example B-3	Example of Calculations: Double Specification Limit—One AQL
		Value for Both Upper and Lower Specification Limit Combined40
	Example B-4	Example of Calculations: Double Specification Limit—
		Different AQL Values for Upper and Lower Specification Limits 41
	Tables:	
	Table B-3	Master Table for Normal and Tightened Inspection (Double
		Specification Limit and Form 2—Single Specification Limit)42
	Table B-4	Master Table for Reduced Inspection (Double Specification
	T 11 D 6	Limit and Form 2—Single Specification Limit)
	Table B-5	Table for Estimating the Lot Percent Nonconforming
	Table B-6 Appendix B	Values of F for Maximum Standard Deviation (MSD)
CECEION	* *	
		UNKNOWN—RANGE METHOD
Part I		CATION LIMIT55
	Examples:	
	Example C-1	Example of Calculations: Single Specification Limit—Form I
	Example C-2	Example of Calculations: Single Specification Limit—Form 2 59
	Tables:	Martin Table Co. Name of The board Inspection
	Table C-1	Master Table for Normal and Tightened Inspection (Ginela Specification Limit Form D)
	Table C 2	(Single Specification Limit—Form I)
	Table C-2	Master Table for Reduced Inspection (Single Specification Limit—Form I)
D . II	DOUDLE OPEOU	
Part II	DOORLE SEECH	FICATION LIMIT

		Page
	Examples:	
	Example C-3	Example of Calculations: Double Specification Limit—One AQL
	E1- C 4	Value for Both Upper and Lower Specification Limit Combined65
	Example C-4	Example of Calculations: Double Specification Limit—Different AQL Value for Upper and Lower Specification Limits
	Tables:	AQL value for Opper and Lower Specification Limits
	Table C-3	Master Table for Normal and Tightened Inspection (Double
	Table C 5	Specification Limit and Form 2—Single Specification Limit)67
	Table C-4	Master Table for Reduced Inspection (Double Specification
	14010 0 .	Limit and Form 2—Single Specification Limit)
	Table C-5	Table for Estimating the Lot Percent Nonconforming 69
	Table C-6	Values of f for Maximum Average Range (MAR)78
	Appendix C	Definitions
SECTION	D VARIABILITY	KNOWN80
Part I		CATION LIMIT80
Turci	Examples:	
	Example D-1	Example of Calculations: Single Specification Limit—Form 1 82
	Example D-2	Example of Calculations: Single Specification Limit—Form 2 83
	Tables:	·
	Table D- 1	Master Table for Normal and Tightened Inspection
		(Single Specification Limit—Form 1)84
	Table D-2	Master Table for Reduced Inspection (Single Specification
		Limit—Form 1)
Part II		ICATION LIMIT88
	Examples:	
	Example D-3A	Example of Calculations: Double Specification Limit—One AQL
	E 1 D 1D	Value for Both Upper and Lower Specification Limit Combined90
	Example D-3B	Example of Calculations: Double Specification Limit—One AQL
	Engueria D. 4	Value for Both Upper and Lower Specification Limit Combined91
	Example D-4	Example of Calculations: Double Specification Limit—Different AQL Values for Upper and Lower Specification Limits92
	Tables:	AQL values for Opper and Lower specification Limits92
	Table D-3	Master Table for Normal and Tightened Inspection (Double
	Table D-3	Specification Limit and Form 2—Single Specification Limit)93
	Table D-4	Master Table for Reduced Inspection (Double Specification Limit
	10010 2 .	and Form 2—Single Specification Limit)
	Table D-5	Table for Estimating the Lot Percentage Nonconforming97
	Table D-6	Value of F σ for Maximum Process Standard Deviation
	Appendix D	Definitions
SECTION	E APPENDIX—M	1ATCH WITH ANSI/ASQ Z1.4-2003
	Tables:	· ·
	1 Matching Co	ode Letters and ANSI/ASQC Z1.9-2003 Sample Size
		$\mathbb{C}\ Z1.9\text{-}2003\ Percentage\ Points\ in\ Terms\ of\ Percent\ Nonconforming\ .$ 102
		Z1.4-2003 (MIL-STD-105) Percentage Points in Terms of
		conforming
		n Percentage Points—ANSI/ASQC Z1.9-2003 Minus
	ANSI/ASQ 2	Z1.4-2003 (MIL-STD-105)

vi

INTRODUCTION

This standard was prepared to meet a need for the use of standard sampling plans for inspection by variables in procurement, supply and storage, and maintenance inspection operations. The variables sampling plans apply to a single quality characteristic which can be measured on a continuous scale, and for which quality is expressed in terms of percent nonconforming. The theory underlying the development of the variables sampling plans, including the operating characteristic curves, assumes that measurements of the quality characteristics are independent, identically normally distributed random variables.

It is important to note that variables sampling plans are not to be used indiscriminately, simply because it is possible to obtain variables measurement data. The users are advised to consult their technical agency to determine the feasibility of application in considering applications where the normality or independence assumptions may be questioned.

In comparison with attributes sampling plans, variables sampling plans have the advantage of usually resulting in considerable savings in sample size for comparable assurance as to the correctness of decisions in judging a single quality characteristic, or for the same sample size, greater assurance is obtained using variables plans. Attributes sampling plans have the advantage of greater simplicity, of being applicable to either single or multiple quality characteristics, and of requiring no knowledge about the distribution of the continuous measurements of any of the quality characteristics.

This standard is divided into four sections. Section A describes general procedures of the sampling plans. Sections B and C describe specific procedures and applications of the sampling plans when variability is unknown. In Section B the standard deviation is used as the basis for an estimate of the unknown variability, and in Section C the average range of the sample is used. Section D describes the plans when variability is known.

Each of Sections B, C, and D is divided into two parts: (I) Sampling Plans for the Single Specification Limit Case, and (II) Sampling Plans for the Double Specification Limit Case. For the single specification limit case, the acceptability criterion is given in two forms: Form 1 and Form 2. Either of the forms may be used, since they are identical as to sample size and decision for lot acceptability or rejectability. In deciding whether to use Form 1 or Form 2, the following points should be borne in mind. Form 1 provides the lot acceptability criterion without estimating lot percent nonconforming. The Form 2 lot acceptability criterion requires estimates of lot percent nonconforming.

Operating characteristic curves in Table A-3 are for the Normal Inspection sampling plans and show the relationship between quality and percent of lots expected to be accepted for the quality characteristic inspected. As stated, these operating characteristic curves are based on the assumption that measurements are selected at random from a normal distribution.

The corresponding sampling plans in Sections B, C, and D were matched as closely as possible under a system of fixed sample size with respect to their operating characteristic curves. Operating characteristic curves in Table A-3 have been computed for the sampling plans based on the standard deviation estimate of unknown variability. They are equally applicable for sampling plans based on the average range of the sample and those based on known variability.

Certain characteristics concerning the sampling plans in Section B and C and those in Section D should be noted. Plans based on the estimate of unknown variability require fewer sample units for comparable assurance when the standard deviation is used than when the average range of the sample is used. On the other hand, plans using the average range of the sample require simpler computations and may be better understood by operating personnel. Plans using known variability require considerably fewer sample units for comparable assurance than either of the plans of unknown variability; however, the requirement of known variability is a stringent one. The user is well advised to consult a statistician before applying sampling plans using known variability.

vii

Table B-6 provides values of the factor F to compute the maximum standard deviation: MSD. The MSD serves as a guide for the maximum allowable magnitude of the estimate of lot standard deviation when using plans for the double specification limit case, based on the standard deviation. Similarly Table C-6 provides values of the factor f to compute the maximum average range: MAR. The MAR serves as a guide for the maximum allowable magnitude of the average range of the sample when using plans for the double specification limit case, based on the average range. The estimate of lot standard deviation or average range of the sample, if it is less than the MSD or MAR, respectively, helps to ensure, but does not guarantee, lot acceptability.

All symbols and their definitions are given in the appendix of the applicable section. An illustration of the computations and procedures used in the sampling plans is given in the examples in Parts I and II of the applicable section. The computations involve simple arithmetic operations such as addition, subtraction, multiplication, and division of numbers, or at most, the taking of a square root of a number. The user should become familiar with the general procedures of Section A, and refer to the applicable section for detailed instructions regarding specific procedures, computations, and tables for the sampling plans.

Section E—Appendix provides information about the match between this variables standard, ANSI/ASQ Z1.9-2003, and the corresponding attributes standard, ANSI/ASQ Z1.4-2003.

The flowchart in Figure 1 shows the basic procedure for using the standard.

viii

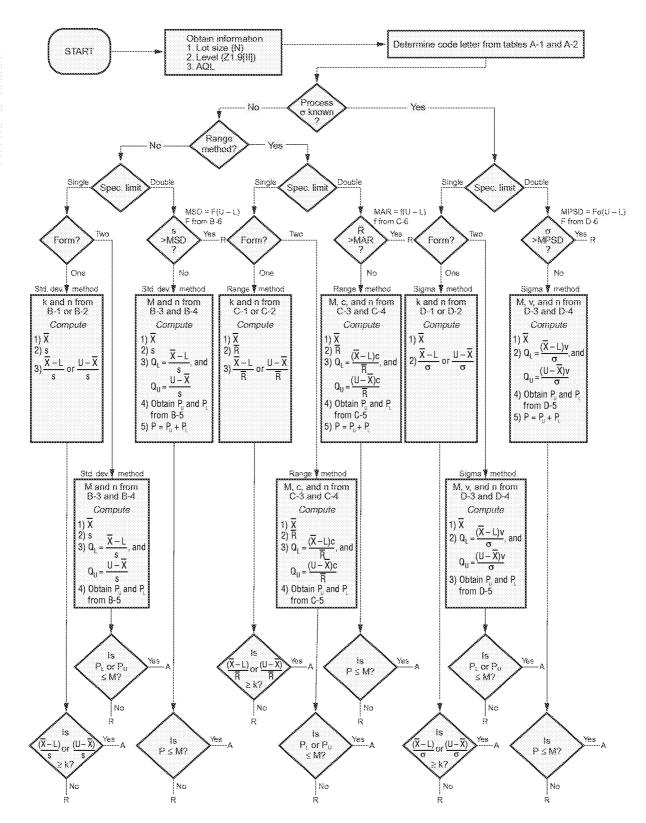


Figure 1 Flowchart for use of ANSI/ASQ Z1.9-2003.

(This page intentionally left blank)

SECTION A

GENERAL DESCRIPTION OF SAMPLING PLANS

A1. SCOPE

A1.1 <u>Purpose</u>. This standard establishes sampling plans and procedures for inspection by variables for use in procurement, supply and storage, and maintenance inspection operations. When applicable this standard shall be referenced in the specification, contract, or inspection instructions, and the provisions set forth herein shall govern.

These acceptance sampling plans for variables are given in terms of the percent or proportion of product in a lot or batch that depart from some requirement. The general terminology used within the document will be given in terms of percent of nonconforming units or number of nonconformities, since these terms are likely to constitute the most widely used criteria for acceptance sampling.

A2. DEFINITIONS AND TERMINOLOGY

For the purpose of this American National Standard, the definitions given in ANSI/ISO/ASQ A3534-2-2004 (to be published) and the following definitions apply. The definitions and terminology employed in this standard are in accord with ANSI/ISO/ASQ A3534-2-2004 (to be published) *Statistics—Vocabulary and symbols—Part 2: Applied Statistics.* Definitions quoted from ANSI/ISO/ASQ A3534-2-2004 (to be published) reference the clause number of that standard.

A2.1 <u>Acceptance Quality Limit (AQL)</u>: The AQL is the quality level that is the worst tolerable product average when a continuing series of lots is submitted for acceptance sampling.

NOTE

The use of the abbreviation AQL to mean Acceptable Quality Level is no longer recommended.

A2.2 <u>Defect</u>: Nonfulfillment of a requirement related to an intended or specified use [ISO 9000]. (See ANSI/ISO/ASQ A3534-2-2004 [to be published] 1.3.1.12)

NOTE 1

The distinction between the concepts defect and nonconformity is important as it has legal connotations, particularly those associated with product liability issues. Consequently the term defect should be used with extreme caution.

NOTE 2

The intended use by the customer can be affected by the nature of the information, such as operating or maintenance instructions, provided by the customer.

- A2.3 <u>Inspection by Variables</u>: Inspection by measuring the magnitude(s) of the characteristic(s) of an item. (See ANSI/ISO/ASQ A3534-2-2004 [to be published] 1.4.1.4)
- A2.4 Lot Size: The number of items in a lot.
- A2.5 <u>Mixed Variables-Attributes Inspection</u>: Mixed variables-attributes inspection is inspection of a sample by attributes, in addition to inspection by variables already made of a previous sample from the lot, before a decision as to acceptability or rejectability of a lot can be made.
- A2.6 <u>Nonconformity</u>: Nonfulfillment of a requirement [ISO 9000]. (See ANSI/ISO/ASQ A3534-2-2004 [to be published] 1.3.1.11)

NOTE

See notes to defect (A2.2)

A2.7 <u>Sampling Plan</u>: A specific plan which states the sample size(s) to be used and the associated criteria for accepting the lot.

NOTE

The sampling plan does not contain the rules on how to take the sample.

A2.8 <u>Sampling Scheme</u>: A combination of sampling plans with rules for changing from one plan to another.

NOTE

Some schemes have switching rules for automatic change to tightened inspection plans or reduced inspection plans or change to 100 percent inspection.

A2.9 <u>Switching Rule</u>: Instruction within an acceptance sampling scheme for changing from one acceptance sampling plan to another of greater or lesser severity of sampling based on demonstrated quality level (See ANSI/ISO/ASQ A3534-2-2004 [to be published] 1.4.3.4)

EXAMPLE

Normal, tightened, reduced inspection or discontinuation of inspection are examples of severity of sampling.

A2.10 <u>Specification Limit</u>: Limiting value stated for a characteristic. (See ANSI/ISO/ASQ A3534-2-2004 [to be published] 1.3.1.3)

A3. PERCENT NONCONFORMING

A3.1 <u>Expression of Nonconformance</u>. The extent of nonconformance of product shall be expressed in terms of percent nonconforming.

A4. ACCEPTANCE QUALITY LIMIT

A4.1 Acceptance Quality Limit. The acceptance quality limit (AQL) represents a nominal value expressed in terms of percent nonconforming specified for a single quality characteristic. Certain numerical values of AQL ranging from .10 to 10.00 percent are shown in Table A-1. When a range of AQL values is specified, it shall be treated as if it were equal to the value of AQL for which sampling plans are furnished and which is included within the AQL range. When the specified AQL is a particular value other than those for which sampling plans are furnished, the AQL, which is to be used in applying the provisions of this standard, shall be as shown in Table A-1.

A4.2 Note on the Meaning of AQL. The concept of AQL only applies when an acceptance sampling scheme with rules for switching between normal, tightened, and reduced inspection and discontinuance of sampling inspection is

used. These rules are designed to encourage suppliers to have process averages consistently better than the AQL. If suppliers fail to do so, there is a high probability of being switched from normal inspection to tightened inspection where lot acceptance becomes more difficult. Once on tightened inspection, unless corrective action is taken to improve product quality, it is very likely that the rule requiring discontinuance of sampling inspection will be invoked.

Although individual lots with quality as bad as the AQL can be accepted with fairly high probability, the designation of an AQL does not suggest that this is necessarily a desirable quality level. The AQL is a parameter of the sampling scheme and should not be confused with a process average, which describes the operating level of a manufacturing process. It is expected that the product quality level will be less than the AQL to avoid excessive non-accepted lots.

The sampling plans in this standard are so arranged that the probability of lot acceptance at the designated AQL depends upon sample size, being generally higher for large samples than for small samples for a given AQL. To determine the specific protection to the consumer at a given AQL, it is necessary to refer to the operating characteristic curves (which are provided in this standard) of the corresponding scheme and its constituent plans.

The AQL alone does not describe the protection to the consumer for individual lots or batches, but more directly relates to what is expected from a series of lots or batches provided the provisions of this standard are satisfied.

A4.3 <u>Specifying AQLs</u>. The particular AQL value to be used for a single quality characteristic of a given product must be specified. In the case of a double specification limit, either an AQL value is specified for the total percent nonconforming outside of both upper and lower specification limits, or two AQL values are specified, one for the upper limit and another for the lower limit.

A5. SUBMITTAL OF PRODUCT

A5.1 Lot. The term "lot" shall mean "inspection lot."

- A5.1.1 <u>Formation of Lots</u>. Each lot shall, as far as is practicable, consist of units of product of a single type, grade, class, size, or composition manufactured under essentially the same conditions.
- A5.1.2 <u>Lot Size</u>. The lot size may differ from the quantity designated in the contract or order as a lot for production, shipment, or other purposes.

A6. LOT ACCEPTABILITY

- A6.1 Acceptability Criterion. The acceptability of a lot of material submitted for inspection shall be determined by use of one of the sampling plans associated with a specified value of the AQL(s). This standard provides sampling plans based on known and unknown variability. In the latter case two alternative methods are provided, one based on the estimate of lot standard deviation and the other on the average range of the sample. These are referred to as the standard deviation method and the range method. For the case of a single specification limit, the acceptability criterion is given in two forms. These are identified as Form 1 and Form 2.
- A6.2 <u>Choice of Sampling Plans</u>. Sampling plans and procedures are provided in Section B if variability is unknown and the standard deviation method is used, in Section C if variability is unknown and the range method is used, and in Section D if variability is known. Unless otherwise specified, unknown variability, standard deviation method sampling plans, and the acceptability criterion of Form 2 (for the single specification limit case) shall be used.

A7. SAMPLE SELECTION

A7.1 <u>Determination of Sample Size</u>. The sample size code letter depends on the inspection level and the lot size. There are five inspection levels: Special Levels S3, S4, and General Levels I, II, and III. Unless otherwise specified, Inspection Level II shall be used. However, Inspection Level I may be specified when less discrimination is needed, or Level III may be specified for greater discrimination. Levels S3 and S4 may be used when relatively small

sample sizes are necessary and large sampling risks can or must be tolerated. The sample size code letter applicable to the specified inspection level and for lots of given size shall be obtained from Table A-2.

A7.2 <u>Drawings of Samples</u>. Units of the sample shall be selected at random without regard to their quality.

A8. NORMALITY ASSUMPTION

This standard assumes the underlying distribution of individual measurements to be normal in shape. Failure of this assumption to be valid will affect the OC curves and probabilities based on these curves. In particular it will affect the estimate of percent nonconforming calculated from the mean and standard deviation of the distribution. The assumption should be verified prior to use of this standard.

A variety of statistical tests and graphical techniques are available for this purpose. A person knowledgeable in statistics should be consulted who can advise whether the distribution appears suitable for sampling by variables.

A9. SPECIAL PROCEDURE FOR APPLICA-TION OF MIXED VARIABLES-ATTRIBUTES SAMPLING PLANS

A9.1 <u>Applicability</u>. A mixed variables and attributes sampling plan may be used under either of the two following conditions: (Note: No operating characteristic curves are provided for the mixed variables-attributes sampling plans herein and those in Table A-3 are not applicable.)

<u>Condition A</u>. Ample evidence exists that the product submitted for inspection is selected by the supplier to meet the specification limit(s) by a screening process from a larger quantity of product which is not being produced within the specification limit(s).

<u>Condition B.</u> Other conditions exist that warrant the use of a variables-attributes sampling plan.

A9.2 <u>Selection of Sampling Plans</u>. The mixed variablesattributes sampling plan shall be selected in accordance with the following:

- A9.2.1 Select the variables sampling plan in accordance with Section B, C, or D.
- A9.2.2 Select the attributes sampling plan from ANSI Z1.4 using a single sampling plan and tightened inspection. The same AQL value(s) shall be used for the attributes sampling plan as used for the variables plan of paragraph A9.2.1 (Additional sample items may be drawn, as necessary, to satisfy the requirements for sample size of the attributes sampling plan. Count as a nonconforming unit each sample item falling outside of specification limit(s).)
- A9.3 <u>Determination of Acceptability</u>. A lot meets the acceptability criterion if one of the following conditions is satisfied:

<u>Condition A</u>. The lot complies with the appropriate variables acceptability criterion of Section B, C, or D.

<u>Condition B</u>. The lot complies with the acceptability criterion of ANSI/ASQ Z1.4-2003.

- A9.3.1 If Condition A is not satisfied, proceed in accordance with the attributes sampling plan to meet Condition B.
- A9.3.2 If Condition B is not satisfied, the lot does not meet the acceptability criterion.

A10. NORMAL, TIGHTENED, AND REDUCED INSPECTION

- A10.1 <u>Initiation of Inspection</u>. Normal inspection will be used at the start of inspection unless otherwise directed by the responsible authority.
- A10.2 <u>Continuation of Inspection</u>. Normal, tightened, or reduced inspection shall continue unchanged on successive lots or batches except where the following switching procedures require change.

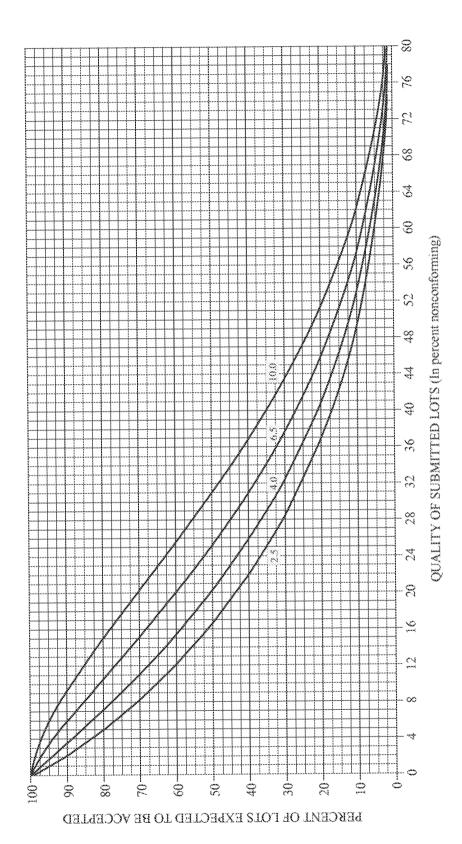
A10.3 Switching Procedures.

- A10.3.1 <u>Normal to Tightened</u>. When normal inspection is in effect, tightened inspection shall be instituted when two out of five consecutive lots or batches have been rejected on original inspection (that is, ignoring resubmitted lots or batches for this procedure).
- A10.3.2 <u>Tightened to Normal</u>. When tightened inspection is in effect, normal inspection shall be instituted when five consecutive lots or batches have been considered acceptable on original inspection.
- A10.3.3 <u>Normal to Reduced</u>. When normal inspection is in effect, reduced inspection shall be instituted providing that all of the following conditions are satisfied:
 - a. The preceding 10 lots or batches have been on normal inspection and none has been rejected; and
 - b. Production is at a steady rate; and
 - c. Reduced inspection is considered desirable by the responsible authority and is permitted by the contract or specification.
- A10.3.4 <u>Reduced to Normal</u>. When reduced inspection is in effect, normal inspection shall be instituted if any of the following occur on original inspection:
 - a. A lot or batch is rejected; or
 - b. Production becomes irregular or delayed; or
 - Other conditions warrant that normal inspection shall be instituted.
- A10.4 <u>Discontinuation of Inspection</u>. If the cumulative number of lots not accepted in a sequence of consecutive lots on tightened inspection reaches 5, the acceptance procedures of this standard shall be discontinued. Inspection under the provisions of this standard shall not be resumed until corrective action has been taken. Tightened inspection shall then be used as if A10.3.1 had been invoked.

Table A-1
AQL Conversion Table

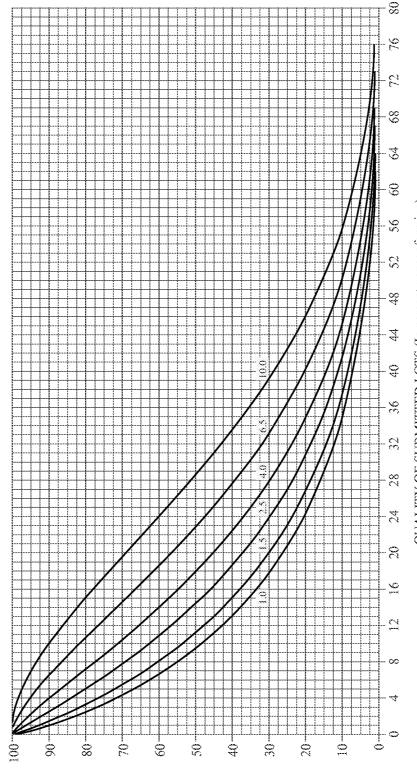
For specif		Use this AQL value		
***	to	0.109	0.10	
0.110	to	0.164	0.15	
0.165	to	0.279	0.25	
0.280	to	0.439	0.40	
0.440	to	0.669	0.65	
0.700	to	1.09	1.0	
1.10	to	1.64	1.5	
1.65	to	2.79	2.5	
2.80	to	4.39	4.0	
4.40	to	6.99	6.5	
7.00	to	10.9	10.0	

*Table A-2*¹ Sample Size Code Letters²


	Inspection Levels						
	Special		General				
	83	S4	1	11	Ш		
2	to	8	В	В	В	В	С
9	to	15	В	В	В	В	D
16	to	25	В	В	В	C	Е
26	to	50	В	В	С	D	F
51	to	90	В	В	D	E	G
91	to	150	В	C	Ε	F	Н
151	to	280	В	D	F	G	Ι
281	to	400	С	Ε	G	Н	J
401	to	500	С	Е	G	1	J
501	to	1,200	D	F	Н	J	K
1,201	to	3,200	E	G	1	K	L
3,201	to	10,000	F	Н	J	L	Μ
10,001	to	35,000	G	1	K	M	N
35,001	to	150,000	Н	J	L	N	Р
150,001	to	500,000	Н	K.	M	P	Р
500,001	and	over	Н	K	N	р	Р

¹The theory governing inspection by variables depends on the properties of the normal distribution and, therefore, this method of inspection is only applicable when there is reason to believe that the frequency distribution is normal.

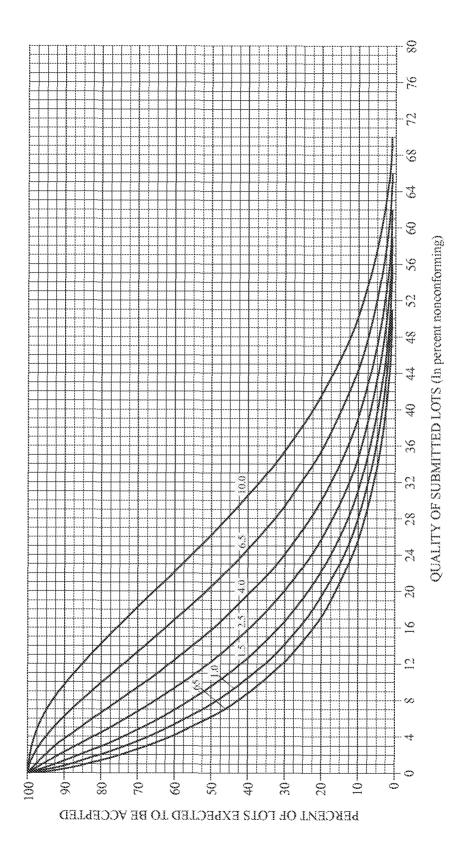
²Sample size code letters given in body of table are applicable when the indicated inspection levels are to be used.


Table A-3
Operating Characteristic Curves for Sampling Plans of Sections B, C, and D

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter B Table A-3

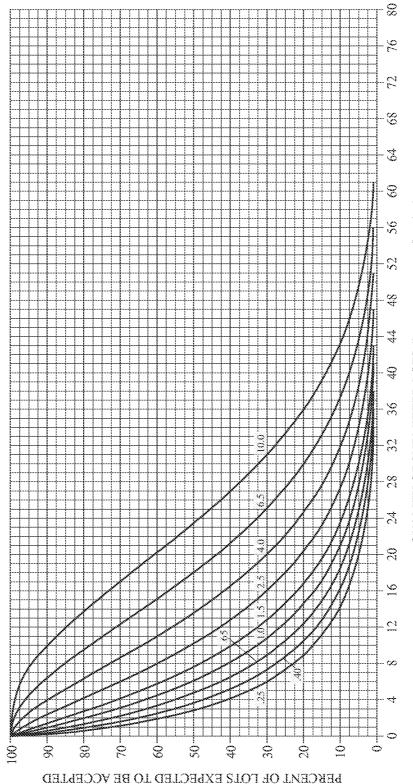
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter C



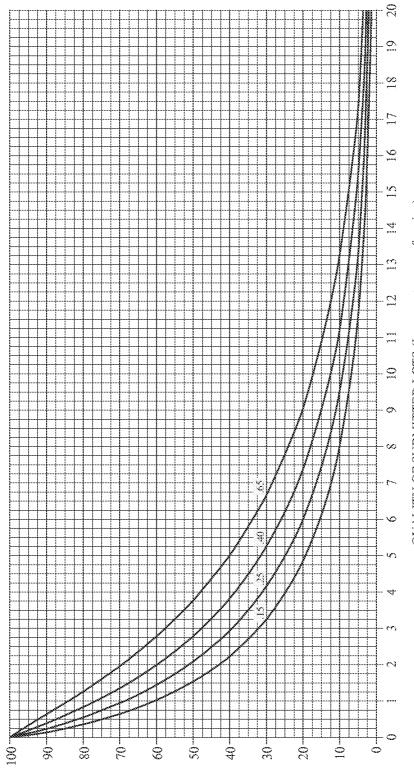
QUALITY OF SUBMITTED LOTS (In percent nonconforming)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.


PERCENT OF LOTS EXPECTED TO BE ACCEPTED

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter D

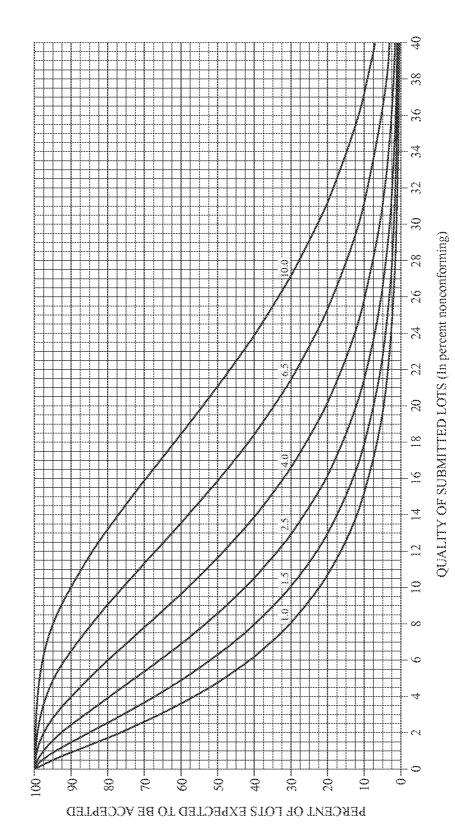
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter E

QUALITY OF SUBMITTED LOTS (In percent nonconforming)

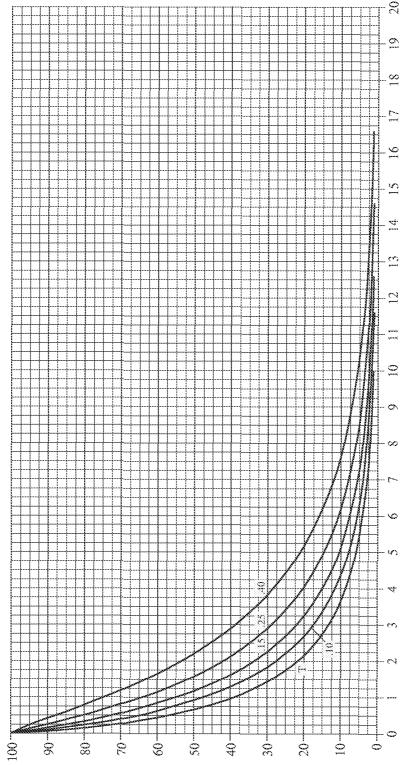
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter F



QUALITY OF SUBMITTED LOTS (In percent nonconforming)

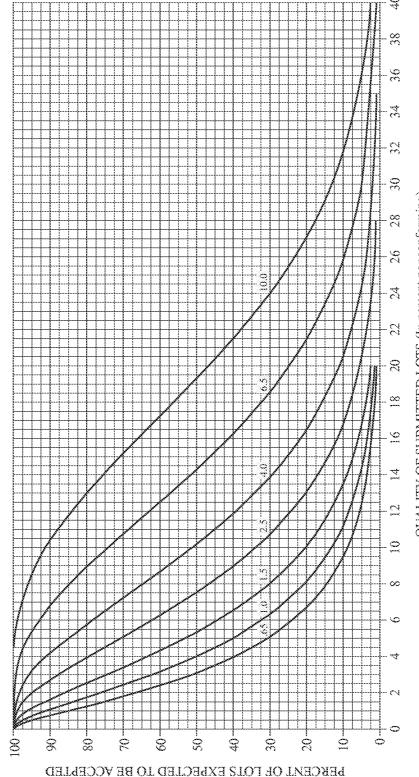
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.


PERCENT OF LOTS EXPECTED TO BE ACCEPTED

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter F (Continued)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.

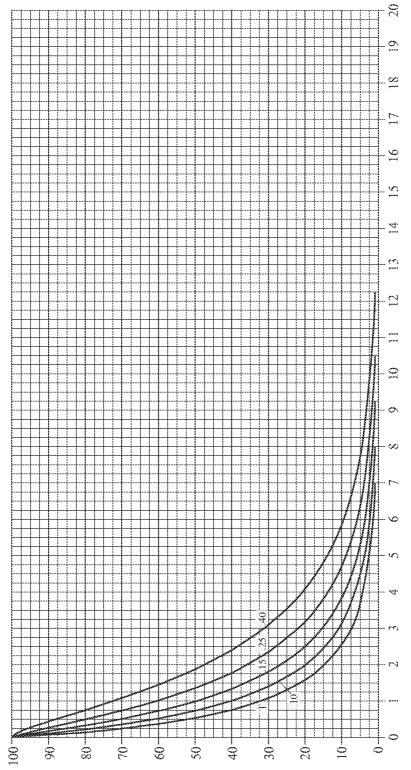
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter G



QUALITY OF SUBMITTED LOTS (In percent nonconforming)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

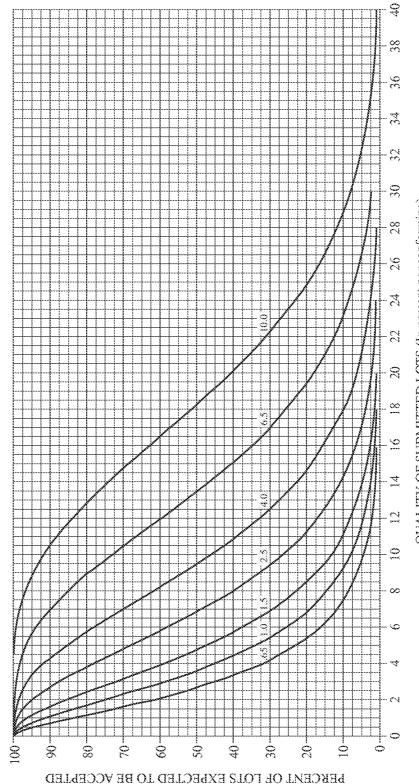
PERCENT OF LOTS EXPECTED TO BE ACCEPTED


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter G (Continued)

QUALITY OF SUBMITTED LOTS (In percent nonconforming)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.

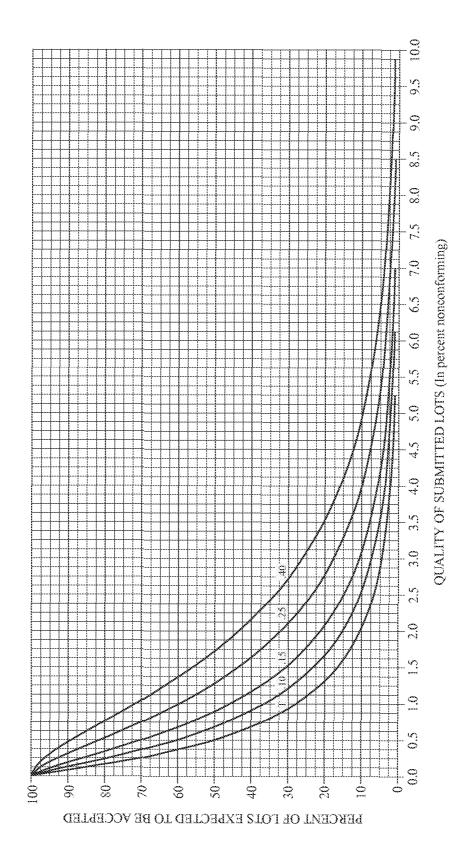
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter H



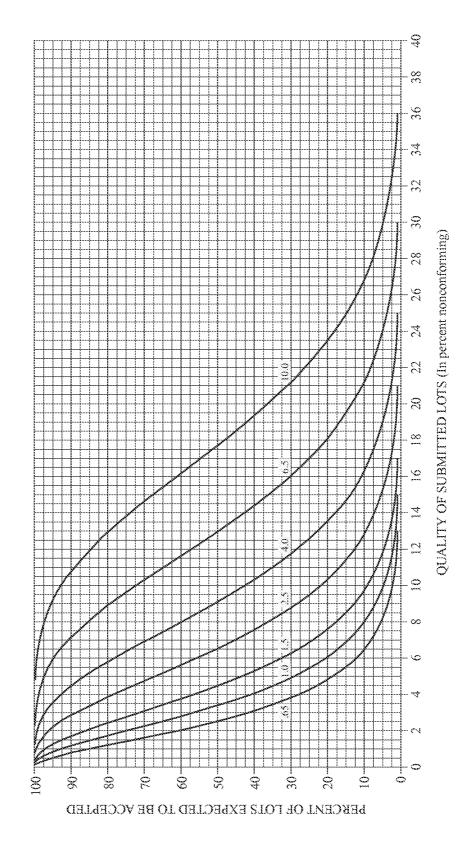
QUALITY OF SUBMITTED LOTS (In percent nonconforming)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

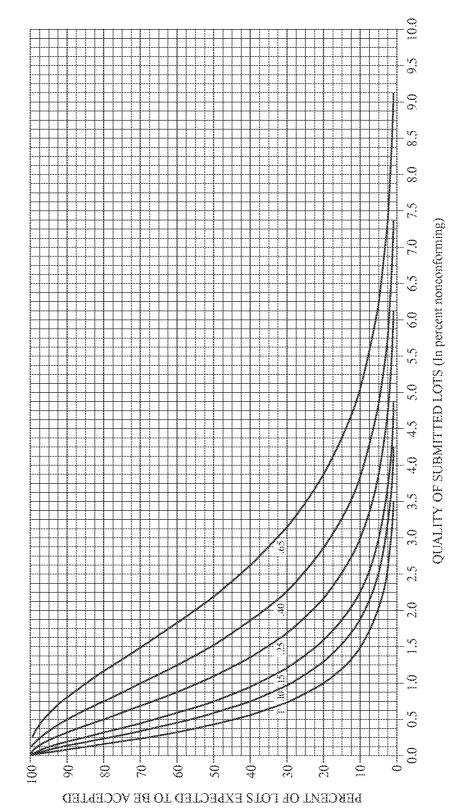
PERCENT OF LOTS EXPECTED TO BE ACCEPTED


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter H (Continued)

QUALITY OF SUBMITTED LOTS (In percent nonconforming)


NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.

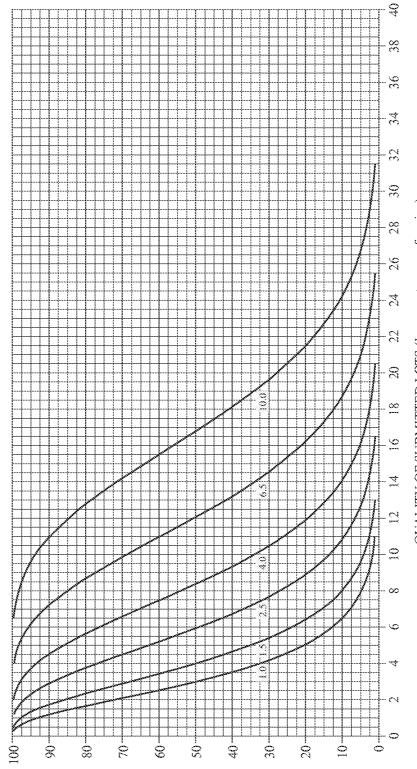
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter I


NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter I (Continued)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.

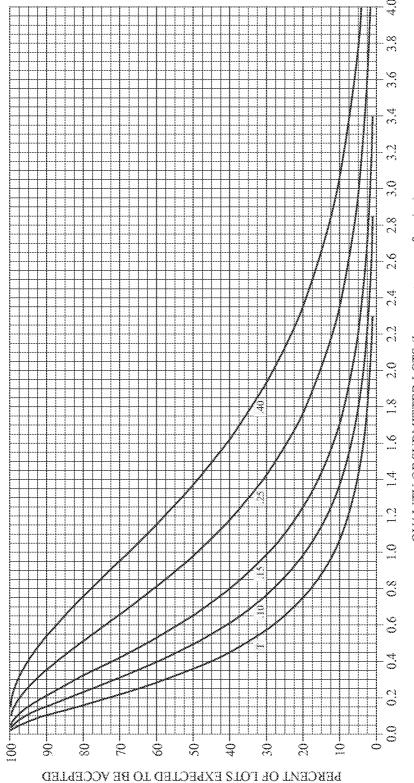
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter J



NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification

of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

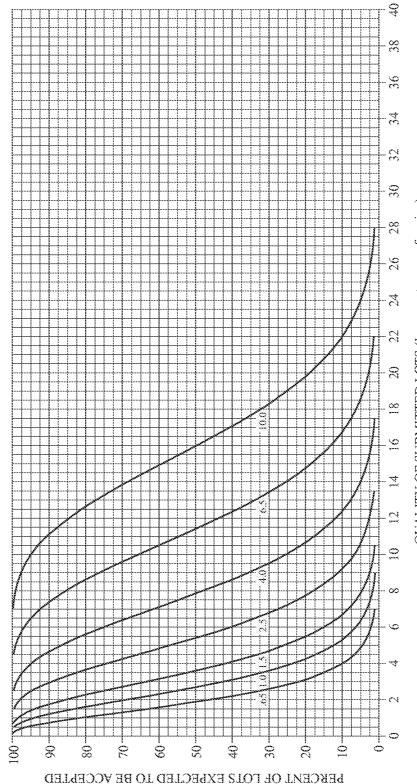
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter J (Continued)



QUALITY OF SUBMITTED LOTS (In percent nonconforming)

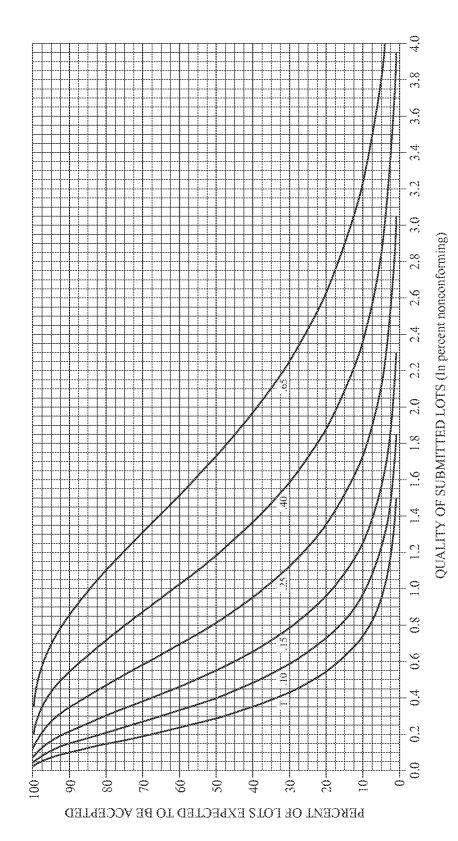
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

PERCENT OF LOTS EXPECTED TO BE ACCEPTED

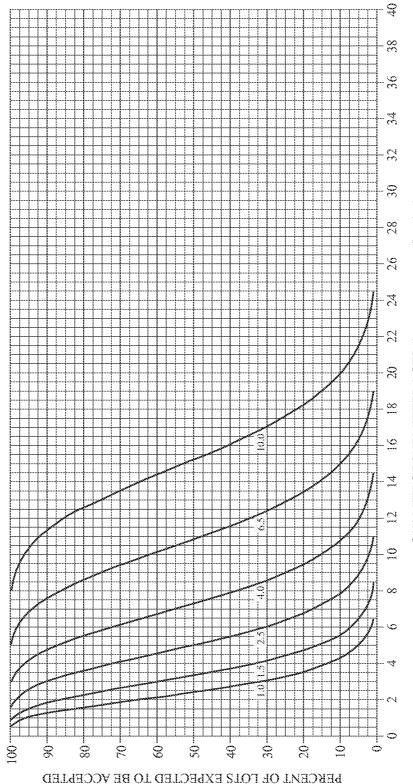

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter K

QUALITY OF SUBMITTED LOTS (In percent nonconforming)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter K (Continued)

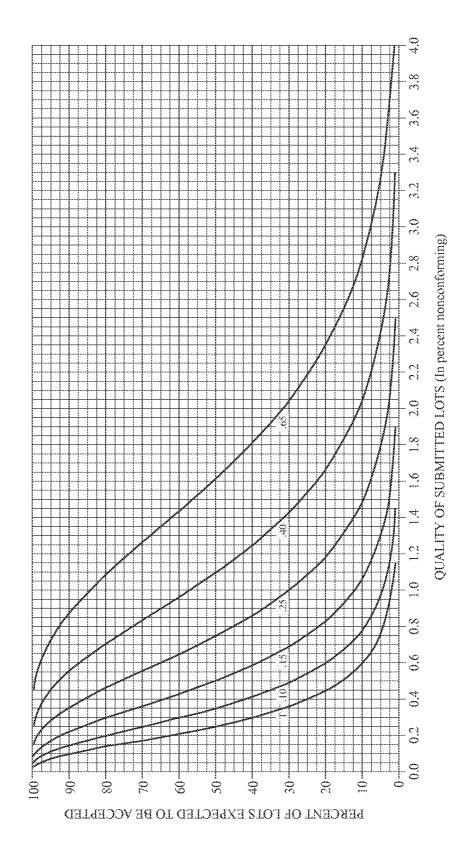
QUALITY OF SUBMITTED LOTS (In percent nonconforming)


NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter L

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter L (Continued)

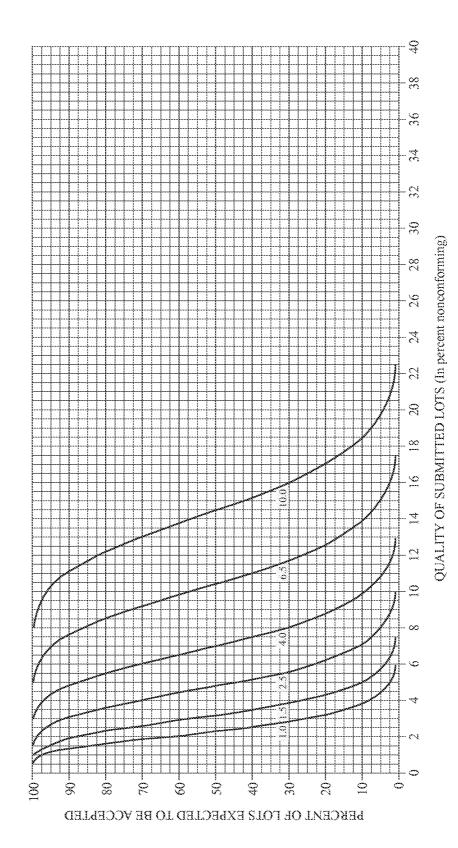


QUALITY OF SUBMITTED LOTS (In percent nonconforming)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter M

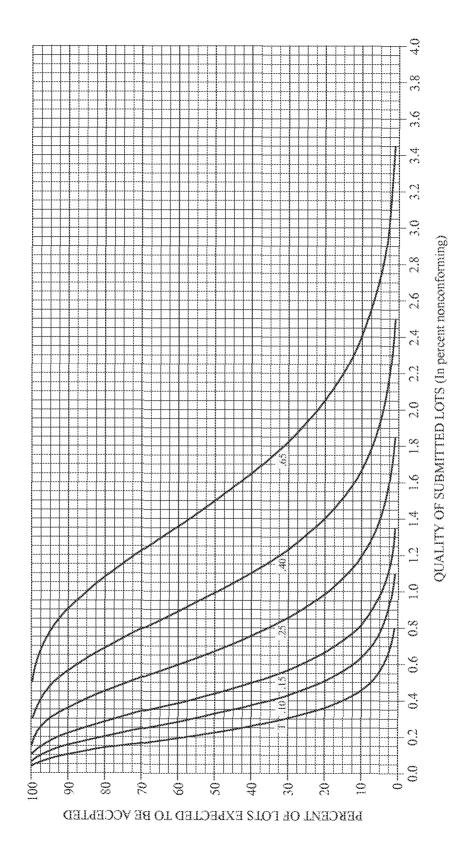
(Curves for sampling plans based on range method and known variability are essentially equivalent)



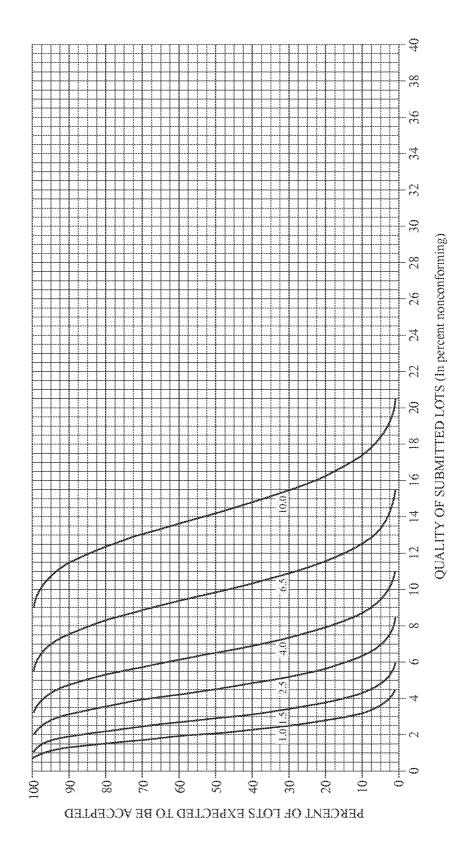
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

26

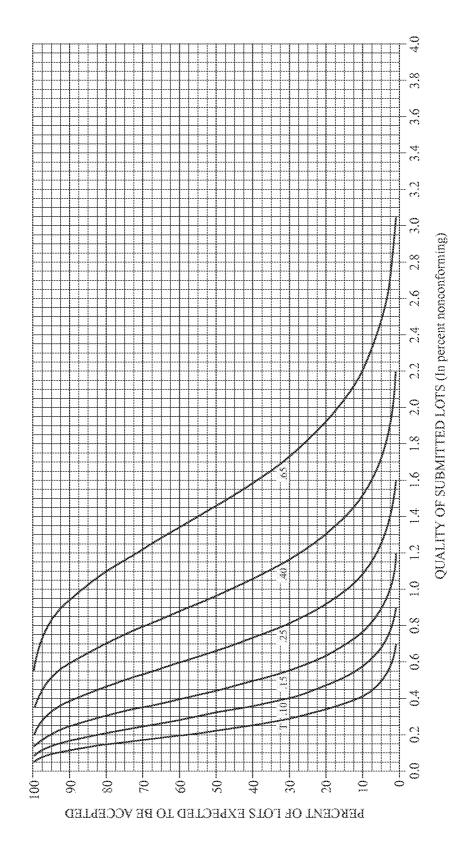
Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter M (Continued)


(Curves for sampling plans based on range method and known variability are essentially equivalent)

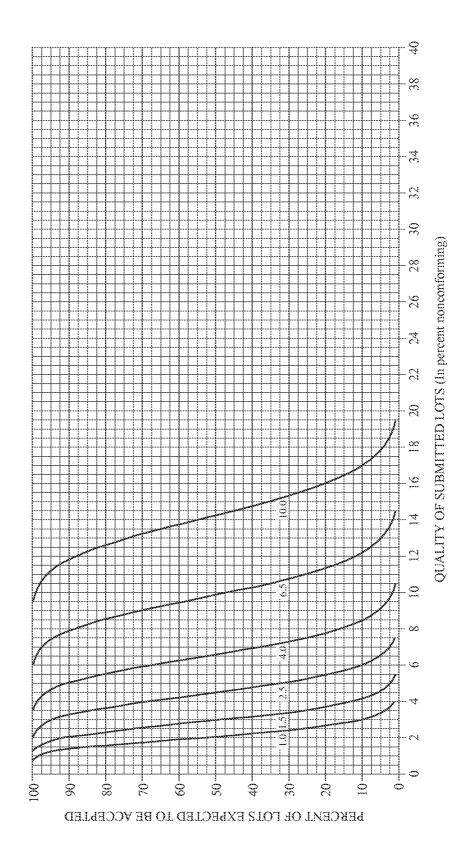
NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter N

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter N (Continued)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be acceptance quality only when measurements are selected at random from a normal distribution.


Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method Sample Size Code Letter P

(Curves for sampling plans based on range method and known variability are essentially equivalent)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

Operating Characteristic Curves for Sampling Plans Based on Standard Deviation Method (Curves for sampling plans based on range method and known variability are essentially equivalent) Sample Size Code Letter P (Continued)

NOTE: Figures on curves are acceptance quality limits (AQLs) for normal inspection. The values of the percent of lots expected to be accepted are valid only when measurements are selected at random from a normal distribution.

SECTION B

VARIABILITY UNKNOWN—STANDARD DEVIATION METHOD

Part 1 SINGLE SPECIFICATION LIMIT

B1. SAMPLING PLAN FOR SINGLE SPECIFICATION LIMIT

This part of the standard describes the procedures for use with plans for a single specification limit when variability of the lot with respect to the quality characteristic is unknown and the standard deviation method is used. The acceptability criterion is given in two equivalent forms. These are identified as Form 1 and Form 2.

- B1.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value, the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the standard.
- B1.2 <u>Drawing of Samples</u>. All samples shall be drawn in accordance with paragraph A7.2.
- B1.3 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

B2. SELECTING THE SAMPLING PLAN WHEN FORM 1 IS USED

- B2.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the standard deviation method are Tables B-1 and B-2. Table B-1 is used for normal and tightened inspection and Table B-2 for reduced inspection.
- B2.2 <u>Obtaining the Sampling Plan</u>. The sampling plan consists of a sample size and an associated acceptability

constant.¹ The sampling plan is obtained from Master Table B-1 or B-2.

- B2.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- B2.2.2 <u>Acceptability Constant</u>. The acceptability constant k, corresponding to the sample size mentioned in paragraph B2.2.1, is indicated in the column of the master table corresponding to the applicable AQL value. Table B-1 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table B-2.

B3. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 1 IS USED²

- B3.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the quantity $(U \overline{X})/s$ or $(\overline{X} L)/s$.
- B3.2 <u>Computation</u>. The following quantity shall be computed: $(U \overline{X})/s$ or $(\overline{X} L)/s$, depending on whether the specification limit is an upper or lower limit, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and s is the estimate of lot standard deviation.

B3.3 Acceptability Criteria. Compare the quantity $(U-\overline{X})/s$ or $(\overline{X}-L)/s$ with the acceptability constant k. If $(U-\overline{X})/s$ or $(\overline{X}-L)/s$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/s$ or $(\overline{X}-L)/s$ is less than k or negative, then the lot does not meet the acceptability criterion.

¹See Appendix B for definitions of all symbols used in the sampling plans based on variability unknown—standard deviation method.

²See Example B-1 for a complete example of this procedure.

B4. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 1 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Obtain plan from Master Table B-1 or B-2 by selecting the sample size n and the acceptability constant k.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic for each unit of the sample.
- (4) Compute the sample mean (\overline{X}) and estimate of lot standard deviation s, and also compute the quantity $(U \overline{X})/s$ for an upper specification limit U or the quantity $(\overline{X} L)/s$ for a lower specification limit L.
- (5) If the quantity $(U-\overline{X})/s$ or $(\overline{X}-L)/s$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/s$ or $(\overline{X}-L)/s$ is less than k or negative, then the lot does not meet the acceptability criterion.

B5. SELECTING THE SAMPLING PLAN WHEN FORM 2 IS USED

- B5.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the standard deviation method are Table B-3 and B-4 of Part II. Table B-3 is used for normal and tightened inspection and Table B-4 for reduced inspection.
- B5.2 <u>Obtaining the Sampling Plan</u>. The sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan is obtained from Master Table B-3 or B-4.
- B5.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- B5.2.2 <u>Maximum Allowable Percent Nonconforming</u>. The maximum allowable percent nonconforming M for sample estimates corresponding to the sample size mentioned in paragraph B5.2.1 is indicated in the column of the master table corresponding to the applicable AQL value. Table B-3 is entered from the top for normal inspection and from the

bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table B-4.

B6. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 2 IS USED³

- B6.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the percent of nonconforming product outside the upper or lower specification limit. The percentage of nonconforming product is estimated by entering Table B-5 with the quality index and the sample size.
- B6.2 <u>Computation of Quality Index</u>. The quality index $Q_U = (U \overline{X}/s \text{ shall be computed if the specification limit is an upper limit U, or <math>Q_L = (\overline{X} L)/s$ if it is a lower limit L. The quantities, (\overline{X}) and s, are the sample mean and estimate of lot standard deviation, respectively.
- B6.3 Estimate of Percent Nonconforming in Lot. The quality of a lot shall be expressed by p_U , the estimated percent nonconforming in the lot above the upper specification limit, or by p_L , the estimated percent nonconforming below the lower specification limit. The estimated percent nonconforming p_U or p_L is obtained by entering Table B-5 with Q_U or Q_L and the appropriate sample size.
- B6.4 Acceptability Criterion. Compare the estimated lot percent nonconforming p_U or p_L with the maximum allowable percent nonconforming M. If p_U or p_L is equal to or less than M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

B7. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 2 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table B-3 or B-4 by selecting the sampling size n and the maximum allowable percent nonconforming M.

³See Example B-2 for a complete example of this procedure.

- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
- (4) Compute the sample mean \overline{X} and the estimate of lot standard deviation s.
- (5) Compute the quality index $Q_U = (U \overline{X})/s$ if an upper specification limit U is specified, or $Q_L = (\overline{X} L)/s$ if a lower specification limit L is specified.
- (6) Determine the estimated lot percent nonconforming P_{IJ} or P_{IL} from Table B-5.
- (7) If the estimated lot percent nonconforming $P_{\scriptscriptstyle U}$ or $P_{\scriptscriptstyle L}$ is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if $P_{\scriptscriptstyle U}$ or $P_{\scriptscriptstyle L}$ is greater than M or if $Q_{\scriptscriptstyle U}$ or $Q_{\scriptscriptstyle L}$ is negative, then the lot does not meet the acceptability criterion.

EXAMPLE B-1

Example of Calculations
Single Specification Limit—Form 1
Variability Unknown—Standard Deviation Method

Example The maximum temperature of operation for a certain device is specified as 209°F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% is to be used. From Tables A-2 and B-1 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: ΣX	975	
3	Sum of Squared Measurements: $\sum X^2$	190,435	
4	Correction Factor (CF): $(\Sigma X)^2/n$	190,125	$(975)^2/5$
5	Corrected Sum of Squares (SS): $\sum X^2 - CF$	310	190,435 – 190,125
6	Variance (V): $SS/(n-1)$	77.5	310/4
7	Estimate of Lot Standard Deviation s: $\sqrt{ m V}$	8.80	$\sqrt{77.5}$
8	Sample Mean \overline{X} : $\sum X/n$	195	975/5
9	Specification Limit (Upper): U	209	
10	The quantity: $(U - \overline{X})/s$	1.59	(209 - 195)/8.80
11	Acceptability Constant: k	1.52	See Table B-1
12	Acceptability Criterion: Compare $(U - \overline{X})$ /s with k	1.59 > 1.52	See Para. B3.3

The lot meets the acceptability criterion, since $(U - \overline{X})/s$ is greater than k.

NOTE: If a single lower specification limit L is given, then compute the quantity $(\overline{X} - L)/s$ in line 10 and compare it with k; the lot meets the acceptability criterion if $(\overline{X} - L)/s$ is equal to or greater than k.

EXAMPLE B-2

Example of Calculations

Single Specification Limit—Form 2

Variability Unknown—Standard Deviation Method

Example The maximum temperature of operation for a certain device is specified as 209°F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% is to be used. From Tables A-2 and B-1 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: $\sum X$	975	
3	Sum of Squared Measurements: $\sum X^2$	190,435	
4	Correction Factor (CF): $(\Sigma X)^2/n$	190,125	$(975)^2/5$
5	Corrected Sum of Squares (SS): $\sum X^2 - CF$	310	190,435 - 190,125
6	Variance (V): $SS/(n-1)$	77.5	310/4
7	Estimate of Lot Standard Deviation s: $\sqrt{\mathrm{V}}$	8.80	$\sqrt{77.5}$
8	Sample Mean \overline{X} : $\sum X/n$	195	975/5
9	Specification Limit (Upper): U	209	
10	Quantity Index: $Q_U = (U - \overline{X})/s$	1.59	(209 - 195)/8.80
11	Est. of Lot Percent Ncf.: p _U	2.19%	See Table B-5
12	Max. Allowable Percent Ncf.: M	3.33%	See Table B-3
13	Acceptability Criterion: Compare p _U with M	2.19% < 3.33%	See Para. B6.4

The lot meets the acceptability criterion, since $p_{\scriptscriptstyle U}$ is less than M.

NOTE: If a single lower specification limit L is given, then compute the quality index $Q_L = (\overline{X} - L)/s$ in line 10 and obtain the estimate of lot percent nonconforming p_L . Compare p_L with M; the lot meets the acceptability criterion if p_L is equal to or less than M.

Standard Deviation Method Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table B-1

Sample				Ac	ceptanc	æ Quali	ty Limi	ts (norm	Acceptance Quality Limits (normal inspection)	ection)			
Size Code	Sample Size	į	.10	.15	.25	04.	59.	1.00	1.50	2.50	4,00	6.50	10.00
Letter		24	K	.24	*	کئے	اعد	,±4	کخہ	,22	.24	24	"bel
m	33	00000000	00000000			888888888	20000000	ooogbe-	soogb-	1.12	.958	.765	.566
U	4	99999999	99999999		00000000	erojja.	w j	1.46	1.34	1.17	10.1	.815	617
Q	Ś	00000000	wg-))	1.77	1.65	1.52	1.40	1.24	1.07	.874	.675
μù	r	***	2.22	2.13	2.00	1.88	1.75	1.62	1.50	1.33	1.15	.955	.755
i	10	2.44	2.34	2.24	2.11	1.98	1.84	1.71	1.59	1.41	1.23	1.03	.828
g	1.5	2.53	2.42	2.32	2.19	2.06	1.92	1.79	1.65	1.48	1.30	1.09	.885
Ш	8	2.58	2.47	2.37	2.23	2.10	1.96	1.83	1.69	1.51	1.33	1.12	.916
iassi	23	2.61	2.50	2.40	2.26	2.13	1.98	1.85	1.72	1.53	1.35	1.14	.935
Ŧ	35	2.66	2.55	2.45	2.31	2.18	2.03	1.89	1.76	1.57	1.39	1.18	896
×	90	2.72	2.61	2.50	2.36	2.22	2.07	1.94	1.80	1971	1.42	121	1.00
<u></u>	73.	2.77	2.66	2.55	2.41	2.27	2.12	1.98	1.84	1.65	1.46	1.25	1.03
X	180	2.80	2.69	2.58	2.43	2.29	2.14	2.00	1.86	1.67	1.48	1.26	1.05
z	150	2.84	2.73	2.62	2.47	2.33	2.18	2.03	1.89	1.70	15.1	1.29	1.07
ď	200	2.85	2.73	2.62	2.47	2.33	2.18	2.04	1.89	1.70	1.51	1.29	1.08
		.10	31.	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00	
				Acc	eptance	Qualit	y Limits	s (tighte	Acceptance Quality Limits (tightened inspection)	pection	<u> </u>		

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or we exceeds lot size, every item in the lot must be inspected.

Standard Deviation Method Master Table for Reduced Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table B-2

10.00 774 .536 609 396 663 694 806 341 341 341 341 366 755 935 566 675 828 885 946 6.50 999 566 617 89. 1.03 955 815 765 765 765 765 8 1.09 1.25 1.03 \overline{c} يكفت 2.50 958 856 958 958 1.35 1.36 1.42 1.15 1.30 1.33 1.46 1.23 1.07 2 1.48 1.53 .53 1.65 33 2 141 1.61 1.50 14. Acceptance Quality Limits 1.73 1.80 1.50 1.59 99. 1.69 1.72 8. 8 34 1.40 1.85 1.86 1.94 3.98 146 1.52 1.62 1.79 1.83 1.71 65 2.12 1.65 .75 84 .92 96.1 .98 2.00 2.08 40 بمن 2.10 2.13 2.14 2.27 1.88 1.98 2.06 2.22 1.77 23 يك 2.00 2.19 2.23 2.36 2.4] 2.11 4 يكمثر 2.13 2.40 2.50 2.24 2.32 2.37 2.41 2 يد Sample 0 20 25 25 30 30 Sample Code Letter Size -Z A 124 124 α $|\mathbf{n}|$ Ö

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Part II DOUBLE SPECIFICATION LIMIT

B8. SAMPLING PLAN FOR DOUBLE SPECIFICATION LIMIT

This part of the standard describes the procedures for use with plans for a double specification limit when variability of the lot with respect to the quality characteristic is unknown and the standard deviation method is used.

B8.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value(s) the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the standard.

B9. SELECTING THE SAMPLING PLAN

A sampling plan for each AQL value shall be selected from Table B-3 or B-4 as follows:

- B9.1 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.
- B9.2 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a double specification limit when using the standard deviation method are Tables B-3 and B-4. Table B-3 is used for normal and tightened inspection and Table B-4 for reduced inspection.
- B9.3 Obtaining Sampling Plan. A sampling plan consists of a sample size and the associated maximum allowable percent nonconforming. The sampling plan to be applied in inspection shall be obtained from Master Table B-3 or B-4.
- B9.3.1 <u>Sample Size</u>. The sample size n is shown in the master tables corresponding to each sample size code letter.
- B9.3.2 <u>Maximum Allowable Percent Nonconforming</u>. The maximum allowable percent nonconforming for sample estimates of percent nonconforming for the lower, upper, or both specification limits combined, corresponding to the sample size mentioned in paragraph B9.3.1, is shown in the column of the master table corresponding to

the applicable AQL value(s). If different AQLs are assigned to each specification limit, designate the maximum allowable percent nonconforming by $M_{\rm L}$ for the lower limit, and by $M_{\rm U}$ for the upper limit. If one AQL is assigned to both limits combined, designate the maximum allowable percent nonconforming by M. Table B-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table B-4.

B10. DRAWING OF SAMPLES

Samples shall be selected in accordance with paragraph A7.2.

B11. LOT-BY-LOT ACCEPTABILITY PROCEDURES

- B11.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a double specification limit shall be judged by the percent of nonconforming product. The percentage of nonconforming product is estimated by entering Table B-5 with the quality index and the sample size.
- B11.2 <u>Computation of Quality Indices</u>. The quality indices $Q_U = (U \overline{X})/s$ and $Q_L = (\overline{X} L)/s$ shall be computed, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and s is the estimate of lot standard deviation.

B11.3 Percent Nonconforming in the Lot. The quality of a lot shall be expressed in terms of the lot percent nonconforming. Its estimate will be designated by $p_{\rm L},\,p_{\rm U},\,$ or p. The estimate $p_{\rm U}$ indicates conformance with respect to the upper specification limit, $p_{\rm L}$ with respect to the lower specification limit, and p for both specification limits combined. The estimates $p_{\rm L}$ and $p_{\rm U}$ shall be determined by entering Table B-5, respectively with $Q_{\rm L}$ and $Q_{\rm U}$ and the sample size. The estimate p shall be determined by adding the corresponding estimated percents nonconforming $p_{\rm L}$ and $p_{\rm U}$ found in the table.

B12. ACCEPTABILITY CRITERION AND SUMMARY FOR OPERATION OF SAMPLING PLANS

- B12.1 One AQL value for both Upper and Lower Specification Limit Combined.
- B12.1.1 <u>Acceptability Criterion</u>.⁴ Compare the estimated lot percent nonconforming $p = p_L + p_U$ with the maximum allowable percent nonconforming M. If p is equal to or less than M, the lot meets the acceptability criterion; if p is greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- B12.1.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a single AQL value is established for the upper and lower specification limit combined for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Select plan from Master Table B-3 or B-4. Obtain the sample size n and the maximum allowable percent non-conforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
- (4) Compute the sample mean \overline{X} and estimate a lot of standard deviation s.
- (5) Compute the quality indices $Q_U = (U \overline{X})/s$ and $Q_L = (\overline{X} L)/s$.
- (6) Determine the estimated lot percent nonconforming $p = p_U + p_L$ from Table B-5.
- (7) If the estimated lot percent nonconforming p is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p is greater than M or if either $Q_{\rm U}$ or $Q_{\rm L}$ or both are negative, then the lot does not meet the acceptability criterion.

- B12.2 <u>Different AQL Values for Upper and Lower Specification Limit.</u>
- B12.2.1 <u>Acceptability Criteria</u>. ⁵ Compare the estimated lot percents nonconforming p_L and p_U with the corresponding maximum allowable percents nonconforming M_L and M_U ; also compare $p = p_L + p_U$ with the larger of M_L and M_U . If p_L is equal to or less than M_L , p_U is equal to or less than M_U , and p_U is equal to or less than the larger of M_L and M_U , the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.
- B12.2.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a different AQL value is established for the upper and lower specification limit for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Select the sampling plan from Master Table B-3 or B-4. Obtain the sample size n and the maximum allowable percents nonconforming $M_{\rm U}$ or $M_{\rm L}$, corresponding to the AQL values for the upper and lower specification limits, respectively.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit in the sample.
- (4) Compute the sample mean \overline{X} and the estimate of lot standard deviation s.
- (5) Compute the quality indices $Q_U = (U \overline{X})/s$ and $Q_L = (\overline{X} L)/s$.
- (6) Determine the estimated lot percents nonconforming p_L and p_U corresponding to the percents nonconforming above the upper and below the lower specification limits. Also determine the combined percent nonconforming $p = p_L + p_U$.

⁴See Example B-3 for a complete example of this procedure.

⁵See Example B-4 for a complete example of this procedure.

- (7) If all three of the following conditions:
 - (a) p_U is equal to or less than M_U ,
 - (b) p_L is equal to or less than M_L ,
 - (c) p is equal to or less than the larger of M_L and M_U ,

are satisfied, the lot meets the acceptability criteria; otherwise the lot does not meet the acceptability criteria. If either $Q_{\rm L}$ or $Q_{\rm U}$ or both are negative, then the lot does not meet the acceptability criteria.

EXAMPLE B-3

Example of Calculations
Double Specification Limit
Variability Unknown—Standard Deviation Method
One AQL Value for Both Upper and Lower Specification Limit Combined

Example The minimum temperature of operation for a certain device is specified as 180°F. The maximum temperature is 209°F. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% is to be used. From Tables A-2 and B-3 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197°, 188°, 184°, 205°, and 201°; and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: $\sum X$	975	
3	Sum of Squared Measurements: $\sum X^2$	190,435	
4	Correction Factor (CF): $(\sum X)^2/n$	190,125	$(975)^2/5$
5	Corrected Sum of Squares (SS): $\sum X^2 - CF$	310	190,435 - 190,125
6	Variance (V): $SS/(n-1)$	77.5	310/4
7	Estimate of Lot Standard Deviation s: \sqrt{V}	8.80	$\sqrt{77.5}$
8	Sample Mean \overline{X} : $\sum X/n$	195	975/5
9	Upper Specification Limit: U	209	
10	Lower Specification Limit: L	180	
11	Quality Index: $Q_U = (U - \overline{X})/s$	1.59	(209 - 195)/8.80
12	Quality Index: $Q_L = (\overline{X} - L)/s$	1.70	(195 - 180)/8.80
13	Est. of Lot Percent Ncf. above U: p _U	2.19%	See Table B-5
14	Est. of Lot Percent Ncf. below L: p _L	0.66%	See Table B-5
15	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.85%	2.19% + 0.66%
16	Max. Allowable Percent Ncf.: M	3.33%	See Table B-3
17	Acceptability Criterion: Compare $p = p_U + p_L$ with M	2.85% < 3.33%	See Para. B12.1.2(7)

The lot meets the acceptability criterion, since $p = p_U + p_L$ is less than M.

EXAMPLE B-4

Example of Calculations

Double Specification Limit

Variability Unknown—Standard Deviation Method

Different AQL Values for Upper and Lower Specification Limits

Example The minimum temperature of operation for a certain device is specified as $180^{\circ}F$. The maximum temperature is $209^{\circ}F$. A lot of 40 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1% for the upper and AQL = 2.5% for the lower specification limit is to be used. From Tables A-2 and B-3 it is seen that a sample of size 5 is required. Suppose the measurements obtained are as follows: 197° , 188° , 184° , 205° , and 201° ; and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	5	
2	Sum of Measurements: $\sum X$	975	
3	Sum of Squared Measurements: $\sum X^2$	190,435	
4	Correction Factor (CF): $(\Sigma X)^2/n$	190,125	$(975)^2/5$
5	Corrected Sum of Squares (SS): $\sum X^2 - CF$	310	190,435 - 190,125
6	Variance (V): $SS/(n-1)$	77.5	310/4
7	Estimate of Lot Standard Deviation s: $\sqrt{ m V}$	8.80	$\sqrt{77.5}$
8	Sample Mean \overline{X} : $\sum X/n$	195	975/5
9	Upper Specification Limit: U	209	
10	Lower Specification Limit: L	180	
11	Quality Index: $Q_U = (U - \overline{X})/s$	1.59	(209 - 195)/8.80
12	Quality Index: $Q_L = (\overline{X} - L)/s$	1.70	(195 - 180)/8.80
13	Est. of Lot Percent Ncf. above U: p _U	2.19%	See Table B-5
14	Est. of Lot Percent Ncf. below L: p _L	0.66%	See Table B-5
15	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.85%	2.19% + 0.66%
16	Max. Allowable Percent Ncf. Above U: M_U	3.33%	See Table B-3
17	Max. Allowable Percent Ncf. below L: M_L	9.80%	See Table B-3
18	Acceptability Criteria: (a) Compare p_U with M_U	2.19% < 3.33%	See Para. B12.2.2(7)(a)
	(b) Compare p_L with M_L	0.66% < 9.80%	See Para. B12.2.2(7)(b)
	(c) Compare p with M_L	2.85% < 9.80%	See Para. B12.2.2(7)(c)

The lot meets the acceptability criteria, since 18(a), (b), and (c) are satisfied; i.e. $p_U \le M_U$, $p_L \le M_L$, and $p \le M_L$.

Standard Deviation Method Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit) Table B-3

Sample				Ac	ceptanc	Acceptance Quality Limits (normal inspection)	ty Limi	ts (norr	nal insp	ection)			
Size Code	Sample Size	Fred	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
Letter		M	M	M	M	M	M	M	M	Ŋ	M	M	M
æ	ξ.	00000000	88888888		100000000	00000000	000000000	angh-		7.59	18.86	26.94	33.69
O	4	000000000	888888888	0000000	00000000	sojje-	sojja-	1,49	5.46	10.88	16.4]	22.84	29.43
α	W)	00000000	ssogge-		mogh-	0.041	1.34	3.33	5.82	08'6	14.37	20.19	26.55
ĮΞÌ	<i>-</i>	•	0.005	0.087	0.421	1.05	2.13	3.54	5.34	8.40	12.19	17.34	23.30
Ħ	10	0.077	0.179	0.349	0.714	1.27	2.14	3.27	4.72	7.26	10.53	15.17	20.73
Ö	1.5	0.186	0.311	0.491	0.839	1.33	2.09	3.06	4.32	6.55	9.48	13.74	18.97
Ħ	97	0.228	0.356	0.531	0.864	1.33	2.03	2.93	4.10	6.18	8.95	13.01	18.07
jassi .	23	0.250	0.378	0.551	0.874	1.32	2.00	2.86	3.97	5.98	8.65	12.60	17.55
J	35	0.253	0.373	0.534	0.833	1.24	1.87	2.66	3.70	5.58	8.11	11.89	16.67
×	90	0.243	0.355	0.503	0.778	1.16	1.73	2.47	3.44	5.21	7.61	11.23	15.87
ᆔ	7.5	0.225	0.326	0.461	0.711	90'1	1.59	2.27	3.17	4.83	7.10	10.58	15.07
M	100	0.218	0.315	0,444	0.684	1.02	1.52	2.18	3.06	4.67	6.88	10,29	14.71
Z	150	0.202	0.292	0.412	0.636	0.946	1.42	2.05	2.88	4.42	6.56	98.6	14.18
c.	200	0.204	0.294	0.414	0.637	0.945	1.42	2.04	2.86	4.39	6.52	9.80	14.11
		01.	.15	.25	94.	.65	1.00	1.50	2.50	4.00	6.50	10.00	
	-			Acc	eptance	Acceptance Quality Limits (tightened inspection)	, Limits	s (tighte	med ins	pection			

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Standard Deviation Method Master Table for Reduced Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit) Table B-4

	10.00	M	40.47	7.4	40.47	40.47	36.79	33.94	30.50	27.65	25.63	24.58	23.97	6	21.99	6
	5	Æ	9	40.47	6		36.		30	27.	25.	24.	23,	23.61	21.	21.05
	6.50	144 144	33.69	33.69	33.69	33.69	29.43	26.55	23.30	20.73	18.97	18.07	17.55	17.25	15.87	15.07
	9										}i					
	4.00	M	26.94	26.94	26.94	26.94	22.84	20.19	17.34	15.17	13.74	13,01	12.60	12.37	11.23	10.58
	2.50	M	18.86	18.86	18.86	18.86	16.41	14.37	12.19	10.53	9.48	8.95	8.65	8.48	7.61	710
nits	1.50	M	7.59	7.59	7.59	7.59	10.88	9.80	8.40	7.26	6.55	6.18	5.98	5.87	5.21	4.83
dity Lit	8.	M	98888888	98888888	00000000	soldie-	5.46	5.82	5.34	4.72	4.32	4.10	3.97	3.91	3.44	-1
ino eou	99.	M	99999999	99999999	00000000	100 M	1.49	3.33	3.54	3.27	3.06	2.93	2.86	2.82	2.47	227
Acceptance Quality Limits	94.	M	98888888	90000000	00000000	88888888		1.34	2.13	2.14	2.09	2.03	2.00	1.98	1.73	1 40
Ţ	.25	M	88888888	88888888	**********	9888888		0.041	1.06	1.27	1.33	1.33	1.32	1.32	1.16	3
	3.5	M	88888888	800000000	*********	98888888	*********	sojja-	0.421	0.714	0.839	0.864	0.874	0.885	0.778	0.711
	91.	M	2000000000	200000000		99999999	2000000000	ang)h-	0.087	0.349	0.491	0.531	0.551	0.567	0.503	0.461
,	Sample Size		ťΩ	গো	3	ĸ	4.	S	7	10	15	20	2.5	30	80	75
Sample	Size Code	Letter	æ	ပ	D	m	íði.	G	I	·	٦	M	H	M	Z	p.

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as M value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Table B-5
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U or		***********		***************************************	***********	***********	Sam	ple Size				***********			
Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
0	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
.1	47.24	46.67	46.44	46.26	46.16	46.10	46.08	46.06	46.05	46.05	46.04	46.03	46.03	46.02	46.02
.2	44.46	43.33	42.90	42.54	42.35	42.24	42.19	42.16	42.15	42.13	42.11	42.10	42.09	42.09	42.08
.3	41.63	40.00	39.37	38.87	38.60	38.44	38.37	38.33	38.31	38.29	38.27	38.25	38.24	38.23	38.22
.31	41.35	39.67	39.02	38.50	38.23	38.06	37.99	37.95	37.93	37.91	37.89	37.87	37.86	37.85	37.84
.32	41.06	39.33	38.67	38.14	37.86	37.69	37.62	37.58	37.55	37.54	37.51	37.49	37.48	37.47	37.46
.33	40.77	39.00	38.32	37.78	37.49	37.31	37.24	37.20	37.18	37.16	37.13	37.11	37.10	37.09	37.08
.34	40,49	38.67	37.97	37.42	37.12	36.94	36.87	36.83	36.80	36.78	36.75	36.73	36.72	36.71	36.71
.35	40.20	38.33	37.62	37.06	36.75	36.57	36.49	36.45	36.43	36.41	36.38	36.36	36.35	36.34	36.33
.36	39.91	38.00	37.28	36.69	36.38	36.20	36.12	36.08	36.05	36.04	36.01	35.98	35.97	35.96	35.96
.37	39.62	37.67	36.93	36.33	36.02	35.83	35.75	35.71	35.68	35.66	35.63	35.61	35.60	35.59	35.58
.38	39.33	37.33	36.58	35.98	35.65	35.46	35.38	35.34	35.31	35.29	35.26	35.24	35.23	35.22	35.21
.39	39.03	37.00	36.23	35.62	35.29	35.10	35.02	34.97	34.94	34.93	34.89	34.87	34.86	34.85	34.84
.40	38.74	36.67	35.88	35.26	34.93	34.73	34.65	34.60	34.58	34.56	34.53	34.50	34.49	34.48	34.47
.41	38.45	36.33	35.54	34.90	34.57	34.37	34.28	34.24	34.21	34.19	34.16	34.13	34.12	34.11	34.11
.42	38.15	36.00	35.19	34.55	34.21	34.00	33.92	33.87	33.85	33.83	33.79	33.77	33.76	33.75	33.74
.43	37.85	35.67	34.85	34.19	33.85	33.64	33.56	33.51	33,48	33.46	33.43	33.40	33.39	33.38	33.38
.44	37.56	35.33	34.50	33.84	33.49	33.28	33.20	33.15	33.12	33.10	33.07	33.04	33.03	33.02	33.01
.45	37.26	35.00	34.16	33.49	33.13	32.92	32.84	32.79	32.76	32.74	32.71	32.68	32.67	32.66	32.65
.46	36.96	34.67	33.81	33.13	32.78	32.57	32.48	32.43	32.40	32.38	32.35	32.32	32.31	32.30	32.29
.47	36.66	34.33	33.47	32.78	32.42	32.21	32.12	32.07	32.04	32.02	31.99	31.96	31.95	31.94	31.93
.48	36.35	34.00	33.12	32.43	32.07	31.85	31.77	31.72	31.69	31.67	31.63	31.61	31.60	31.58	31.58
.49	36.05	33.67	32.78	32.08	31.72	31.50	31.41	31.36	31.33	31.31	31.28	31.25	31.24	31.23	31.22
.50	35.75	33.33	32.44	31.74	31.37	31.15	31.06	31.01	30.98	30.96	30.93	30.90	30.89	30.88	30.87
.51	35.44	33.00	32.10	31.39	31.02	30.80	30.71	30.66	30.63	30.61	30.57	30.55	30.54	30.53	30.52
.52	35.13	32.67	31.76	31.04	30.67	30.45	30.36	30.31	30.28	30.26	30.23	30.20	30.19	30.18	30.17
.53	34.82	32.33	31.42	30.70	30.32	30.10	30.01	29.96	29.93	29.91	29.88	29.85	29.84	29.83	29.82
.54	34.51	32.00	31.08	30.36	29.98	29.76	29.67	29.62	29.59	29.57	29.53	29.51	29.49	29.48	29.48
.55	34.20	31.67	30.74	30.01	29.64	29.41	29.32	29.27	29.24	29.22	29.19	29.16	29.15	29.14	29.13
.56	33.88	31.33	30.40	29.67	29.29	29.07	28.98	28.93	28.90	28.88	28.85	28.82	28.81	28.80	28.79
.57	33.57	31.00	30.06	29.33	28.95	28.73	28.64	28.59	28.56	28.54	28.51	28.48	28.47	28.46	28.45
.58	33.25	30.67	29.73	28.99	28.61	28.39	28.30	28.25	28.22	28.20	28.17	28.14	28.13	28.12	28.11
.59	32.93	30.33	29.39	28.66	28.28	28.05	27.96	27.92	27.89	27.87	27.83	27.81	27.79	27.78	27.78
.60	32.61	30.00	29.05	28.32	27.94	27.72	27.63	27.58	27.55	27.53	27.50	27.47	27.46	27.45	27.44
.61	32.28	29.67	28.72	27.98	27.60	27.39	1	1	į.	i i	27.16	27.14	27.13	27.11	27.11
5 !	31.96		t .	!	:	:	ł		26.89	1	26.83	ł	26.80		, ,
> (31.63					•	4		1	}	26.50	ì	26.47		1 1
.64	31.30	28.67	27.72	26.99	26.61	26.39	Í	26.26	26.23	26.21	26.18	1	26.14		1 8
	30.97	!	!	26.66	ł .	26.07	}	25.93	25.90	25.88	25.85	25.83	,		25.80
£ 2	30.63			26.33	,	25.74		25.61	25.58	25.56	25.53	(25.48	1 2
.67	30.30	27.67		26.00		25.42	25.33	25.29	25.26	25.24	25.21	25.19	•	25.16	, ,
2 5	29.96		5	25.68	•	25.10	5	24.97	24.94	24.92	24.89	24.87	5	24.85	24.84
	29.61		l .	i	24.99	į	24.70	24.65	24.62	24.60	24.57	24.55	į	24.53	: 5

¹Values tabulated are read in percent.

Table B-5–Continued
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U or		******	************	************	***********	***********	Sam	ple Size				***********		***********	
\vec{Q}_L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
.70	29.27	26.67	25.74	25.03	24.67	24,46	24.38	24.33	24.31	24.29	24.26	24.24	24.23	24.22	24.21
.71	28.92	26.33	25.41	24.71	24.35	24.15	24.06	24.02	23.99	23.98	23.95	23.92	23.91	23.90	23.90
.72	28.57	26.00	25.09	24.39	24.03	23.83	23.75	23.71	23.68	23.67	23.64	23.61	23.60	23.59	23.59
.73	28.22	25.67	24.76	24.07	23.72	23.52	23.44	23.40	23.37	23.36	23.33	23.31	23.30	23.29	23.28
.74	27.86	25.33	24,44	23.75	23.41	23.21	23.13	23.09	23.07	23.05	23.02	23.00	22.99	22.98	22.98
.75	27.50	25.00	24.11	23.44	23.10	22.90	22.83	22.79	22.76	22.75	22.72	22.70	22.69	22.68	22.68
.76	27.13	24.67		23.12	22.79	22.60	22.52	22.48	22.46	22.44	22.42	22.40	22.39	22.38	22.38
.77	26.76		1	22.81	22.48	22.30	22.22	22.18	22.16	22.14	22.12	22.10	22.09	22.08	22.08
.78	26.39	24.00	1	22.50	22.18	21.99	21.92	21.89	21.86	21.85	21.82	21.80	21.78	21.79	21.78
.79	26.02	23.67	22.83	22.19	21.87	21.70	21.63	21.59	21.57	21.55	21.53	21.51	21.50	21.49	21.49
.80	25.64	23.33	22.51	21.88	21.57	21.40	21.33	21.29	21.27	21.26	21.23	21.22	21.21	21.20	21.20
.81	25.25	23.00	22.19	21.58	21.27	21.10	21.04	21.00	20.98	20.97	20.94	20.93	20.92	20.91	20.91
.82	24.86	22.67		21.27	20.98	20.81	20.75	20.71	20.69	20.68	20.65	20.64	20.63	20.62	20.62
.83	24.47	22.33	21.56	29.97	29.68	20.52	20.46	20.42	20.40	20.39	20.37	20.35	20.35	20.34	20.34
.84	24.07	22.00	21.24	20.67	20.39	20.23	20.17	20.14	20.12	20.11	20.09	20.07	20.06	20.06	20.05
.85	23.67	21.67	20.93	20.37	20.10	19.94	19.89	19.86	19.84	19.82	19.80	19.79	19.78	19.78	19.77
.86	23.26	21.33	20.62	20.07	19.81	19.66	19.60	19.57	19.56	19.54	19.53	19.51	19.51	19.50	19.50
.87	22.84	21.00	20.31	19.78	19.52	19.38	19.32	19.30	19.28	19.27	19.25	19.24	19.23	19.23	19.22
.88	22.42	20.67	20.00	19.48	19.23	19.10	19.05	19.02	19.00	18.99	18.98	18.96	18.96	18.95	18.95
.89	21.99	20.33	19.69	19.19	18.95	18.82	18.77	18.74	18.73	18.72	18.70	18.69	18.69	18.68	18.68
.90	21.55	20.00	19.38	18.90	18.67	18.54	18.50	18.47	18.46	18.45	18.43	18.42	18.42	18.41	18.41
.91	21.11	19.67		18.61	18.39	18.27	18.23	18.20	18.19	18.18	18.17	18.16	18.15	18.15	18.15
.92	20.66	19.33		18.33	18.11	18.00	17.96	17.94	17.92	17.92	17.90	17.89	17.89	17.89	17.88
.93	20.19	19.00	1	18.04	17.84	17.73	17.69	17.67	17.66	17.65	17.64	17.63	17.63	17.62	17.62
,94	19.73	18.67	18.16	17.76	17.56	17.46	17.43	17.41	17.40	17.39	17.38	17.37	17.37	17.37	17.36
.95	19.25	18.33		17.48	17.29	17.20	17.17	17.16	17.14	17.13	17.12	17.12	17.11	17.11	17.11
.96	18.75	18.00	1	17.20	17.03	16.94	16.90	16.89	16.88	16.88	16.87	16.86	16.86	16.86	16.86
.97	18.25	17.67	1	16.92	16.76	16.68	16.65	16.63	16.62	16.62	16.61	16.61	16.61	16.61	16.60
.98	17.74	17.33	16.96	16.65	16.49	16.42	16.39	16.38	16.37	16.37	16.36	16.36	16.36	16.36	16.36
.99		17.00	16.66	16.37	16.23	16.16	16.14	16.13	16.12	16.12	16.12	16.11	16.11	16.11	16.11
1.00	16.67	16.67	16.36	16.10	15.97	15.91	15.89	15.88	15.88	15.87	15.87	15.87	15.87	15.87	15.87
1.01	16.11	16.33	16.07	15.83	15.72	15.66	15.64	15.63	15.63	15.63	15.63	15.62	15.62	15.62	15.62
1.02	;	16.00		15.56	15.46	15.41	15.40	15.39	15.39	15.38	15.38	15.38	15.38	15.39	15.39
E ;	14.93		i	15.30	i	15.17	15.15	15.15	15.15	15.15	15.15	15.15	1	15.15	1 5
5 !	14.31					:	}	14.91	14.91	14.91	}	14.91	ł	14.91	3
	13.66					•	14.67	14.67	14.67	14.67	14.68	14.68	ł	ì	14.68
2 5	12.98		i	i	i		14,44	14.44	14,44	14,44	14.45	14.45	5	14.45	1 8
. ,	12.27		•	•		14.20	14.20	14.21	14.21	14.21	14.22	14.22	ł	14.23	; {
5 1	11.51		į.			13.97	13.97	13.98	13.98	13.98	13.99	13.99	}	14.00	3
1.09	10.71	15.07	13.70	13.75	13.73	13.74	13.74	13.75	13.75	13.76	13.77	13.77	13.77	13./8	13.78

¹Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U or	***********		*************				Sam	ple Size	*		***************************************				
${Q}_{\mathrm{L}}$	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
1.10	9.84	13.33	13.48	13.49	13.50	13.51	13.52	13.52	13.53	13.54	13.54	13.55	13.55	13.56	13.56
1.11	8.89	13.00	13.20	13.25	13.26	13.28	13.29	13.30	13.31	13.31	13.32	13.33	13.34	13.34	13.34
1.12	7.82	12.67	12.93	13.00	13.03	13.05	13.07	13.08	13.09	13.10	13.11	13.12	13.12	13.13	13.13
1.13		12.33	12.65	12.75	12.80	12.83	12.85	12.86	12.87	12.88	12.89	12.90	12.91	12.91	12.92
1.14	: :	12.00	12.37	12.51	12.57	12.61	12.63	12.65	12.66	12.67	12.68	12.69	12.70	12.70	12.71
1.15		11.67		12.27	12.34	12.39	12.42	12.44	12.45	12.46	12.47	12.48	12.49	12.49	12.50
1.16		11.33		12.03	12.12	12.18	12.21	12.22	12.24	12.25	12.26	12.28	12.28	12.29	12.29
1.17		11.00	1	11.79	11.90	11.96	12.00	12.02	12.03	12.04	12.06	12.07	12.08	12.09	12.09
1.18		10.67		11.56	11.68	11.75	11.79	11.81	11.82	11.84	11.85	11.87	11.88	11.88	11.89
1.19	0.00	10.33	11.02	11.33	11.46	11.54	11.58	11.61	11.62	11.63	11.65	11.67	11.68	11.69	11.69
1.20	0.00	10.00	10.76	11.10	11.24	11.34	11.38	11.41	11.42	11.43	11.46	11.47	11.48	11.49	11.49
1.21	0.00	9.67	10.50	10.87	11.03	11.13	11.18	11.21	11.22	11.24	11.26	11.28	11.29	11.30	11.30
1.22	0.00	9.33	10.23	10.65	10.82	10.93	10.98	11.01	11.03	11.04	11.07	11.09	11.09	11.10	11.11
1.23	0.00	9.00	9.97	10.42	10.61	10.73	10.78	10.81	10.84	10.85	10.88	10.90	10.91	10.92	10.92
1.24		8.67	9.72	10.20	10.41	10.53	10.59	10.62	10.64	10.66	10.69	10.71	10.72	10.73	10.73
1.25	0.00	8.33	9.46	9.98	10.21	10.34	10.40	10.43	10.46	10.47	10.50	10.52	10.53	10.54	10.55
1.26	0.00	8.00	9.21	9.77	10.00	10.15	10.21	10.25	10.27	10.29	10.32	10.34	10.35	10.36	10.37
1.27	0.00	7.67	8.96	9.55	9.81	9.96	10.02	10.06	10.09	10.10	10.13	10.16	10.17	10.18	10.19
1.28	0.00	7.33	8.71	9.34	9.61	9.77	9.84	9.88	9.90	9.92	9.95	9.98	9.99	10.00	10.01
1.29	0.00	7.00	8.46	9.13	9.42	9.58	9.66	9.70	9.72	9.74	9.78	9.80	9.82	9.83	9.83
1.30	0.00	6.67	8.21	8.93	9.22	9,40	9.48	9.52	9.55	9.57	9.60	9.63	9.64	9.65	9.66
1.31	0.00	6.33	7.97	8.72	9.03	9.22	9.30	9.34	9.37	9.39	9.43	9.46	9.47	9.48	9.49
1.32		6.00	7.73	8.52	8.85	9.04	9.12	9.17	9.20	9.22	9.26	9.29	9.30	9.31	9.32
1.33	0.00	5.67	7.49	8.32	8.66	8.86	8.95	9.00	9.03	9.05	9.09	9.12	9.13	9.15	9.15
1.34		5.33	7.25	8.12	8.48	8.69	8.78	8.83	8.86	8.88	8.92	8.95	8.97	8.98	8.99
1.35	0.00	5.00	7.02	7.92	8.30	8.52	8.61	8.66	8.69	8.72	8.76	8.79	8.81	8.82	8.83
1.36		4.67	6.79	7.73	8.12	8.35	8.44	8.50	8.53	8.55	8.60	8.63	8.65	8.66	8.67 8.51
1.37 1.38	0.00	4.33 4.00	6.56 6.33	7.54 7.35	7.95 7.77	8.18 8.01	8.28 8.12	8.33 8.17	8.37 8.21	8.39 8.24	8.44 8.28	8.47 8.31	8.49 8.33	8.50 8.35	8.36
1.39		3.67	6.10	7.17	7.60	7.85	7.96	8.01	8.05	8.08	8.12	8.16	8.18	8.19	8.20
ļ	0.00			ļ	ļ										8.05
1.40 1.41		3.33 3.00	5.88 5.66	6.98 6.80	7.44 7.27	7.69 7.53	7.80 7.64	7.86 7.70	7.90 7.74	7.92 7.77	7.97 7.82	8.01 7.86	8.02 7.87	8.04 7.89	7.90
1.41 1.42	0.00	2.67	5.66 5.44	6.62	7.10	7.33 7.37	7.64 7.49	7.70	7.74	7.77	7.67	7.71	7.73	7.74	7.75
1.43	,	2.33	5.23	6.45	6.94	7.22	7.34	7.33	7.44	7.47	7.52	7.71	7.73	7.60	7.73 7.61
3	0.00	2.00		6.27	6.78	7.22	7.19	7.40	7.30	7.47	7.32	7.36	7.44	7.46	7.61
1.45	, ,	1.67	4.81	6.10	6.63	6.92	7.04	7.11	7.15	7.18	7.24	7.42	7.30	7.32	7.32
1.46	: :	1.33	4.60	5.93	6.47	6.77	6.90	6.97	7.01	7.04	7.10	7.14	7.16	7.18	7.19
1.47	: :	1.00	4,39	5.77	6.32	6.63	6.75	6.83	6.87	6.90	6.96	7.00	7.02	7.04	7.05
1.48		.67	4.19	5.60	6.17	6.48	6.61	6.69	6.73	6.77	6.82	6.86	6.88	6.90	6.91
1.49	: :	.33	3.99	5.44	6.02	6.34	6.48	6.55	6.60	6.63	6.69	6.73	6.75	6.77	6.78
1.49	0.00	.33	3.99	5.44	6.02	6.34	6.48	6.55	6.60	6.63	6.69	6.73	6.75	6.77	6.7

¹Values tabulated are read in percent.

Table B-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U						***************************************	Sam	ple Size	2	***********		***************************************			
$\ddot{ m Q}_{ m L}$	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
1.50	0.00	0.00	3.80	5.28	5.87	6.20	6.34	6.41	6.46	6.50	6.55	6.60	6.62	6.64	6.65
1.51	0.00	0.00	3.61	5.13	5.73	6.06	6.20	6.28	6.33	6.36	6.42	6.47	6.49	6.51	6.52
1.52	0.00	0.00	3.42	4.97	5.59	5.93	6.07	6.15	6.20	6.23	6.29	6.34	6.36	6.38	6.39
1.53	0.00	0.00	3.23	4.82	5.45	5.80	5.94	6.02	6.07	6.11	6.17	6.21	6.24	6.26	6.27
1.54	0.00	0.00	3.05	4.67	5.31	5.67	5.81	5.89	5.95	5.98	6.04	6.09	6.11	6.13	6.15
1.55	1	0.00	2.87	4.52	5.18	5.54	5.69	5.77	5.82	5.86	5.92	5.97	5.99	6.01	6.02
1.56	!	0.00	2.69	4.38	5.05	5.41	5.56	5.65	5.70	5.74	5.80	5.85	5.87	5.89	5.90
1.57	1	0.00	2.52	4.24	4.92	5.29	5.44	5.53	5.58	5.62	5.68	5.73	5.75	5.78	5.79
1.58	1	0.00	2.35	4.10	4.79	5.16	5.32	5.41	5,46	5.50	5.56	5.61	5,64	5.66	5.67
1.59	0.00	0.00	2.19	3.96	4.66	5.04	5.20	5.29	5.34	5.38	5.45	5.50	5.52	5.55	5.56
1.60	0.00	0.00	2.03	3.83	4.54	4.92	5.08	5.17	5.23	5.27	5.33	5.38	5.41	5.43	5.44
1.61	0.00	0.00	1.87	3.69	4.41	4.81	4.97	5.06	5.12	5.16	5.22	5.27	5.30	5.32	5.33
1.62	0.00	0.00	1.72	3.57	4.30	4.69	4.86	4.95	5.01	5.04	5.11	5.16	5.19	5.21	5.23
1.63	0.00	0.00	1.57	3.44	4.18	4.58	4.75	4.84	4.90	4.94	5.01	5.06	5.08	5.11	5.12
1.64	i l	0.00	1.42	3.31	4.06	4.47	4.64	4.73	4.79	4.83	4.90	4.95	4.98	5.00	5.01
1.65	0.00	0.00	1.28	3.19	3.95	4.36	4.53	4.62	4.68	4.72	4.79	4.85	4.87	4.90	4.91
1.66	1	0.00	1.15	3.07	3,84	4.25	4.43	4.52	4.58	4.62	4.69	4.74	4.77	4.80	4.81
1.67	0.00	0.00	1.02	2.95	3.73	4.15	4.32	4.42	4.48	4.52	4.59	4.64	4.67	4.70	4.71
1.68	1	0.00	0.89	2.84	3.62	4.05	4.22	4.32	4.38	4.42	4.49	4.55	4.57	4.60	4.61
1.69	ļ	0.00	0.77	2.73	3.52	3.94	4.12	4.22	4.28	4.32	4.39	4.45	4.47	4.50	4.51
1.70	0.00	0.00	0.66	2.62	3.41	3.84	4.02	4.12	4.18	4.22	4.30	4.35	4.38	4,41	4.42
1.71	0.00	0.00	0.55	2.51	3.31	3.75	3.93	4.02	4.09	4.13	4.20	4.26	4.29	4.31	4.32
1.72	0.00	0.00	0.45	2.41	3.21	3.65	3.83	3.93	3.99	4.04	4.11	4.17	4.19	4.22	4.23
1.73	0.00	0.00	0.36	2.30	3.11	3.56	3.74	3.84	3.90	3.94	4.02	4.08	4.10	4.13	4.14
1.74	1	0.00	0.27	2.20	3.02	3.46	3.65	3.75	3.81	3.85	3.93	3.99	4.01	4.04	4.05
1.75	0.00	0.00	0.19	2.11	2.93	3.37	3.56	3.66	3.72	3.77	3.84	3.90	3.93	3.95	3.97
1.76	i	0.00	0.12	2.01	2.83	3.28	3.47	3.57	3.63	3.68	3.76	3.81	3.84	3.87	3.88
1.77	0.00	0.00	0.06	1.92	2.74	3.20	3.38	3.48	3.55	3.59	3.67	3.73	3.76	3.78	3.80
1.78	1	0.00	0.02	1.83	2.66	3.11	3.30	3.40	3.47	3.51	3.59	3.64	3.67	3.70	3.71
1.79	 	0.00	0.00	1.74	2.57	3.03	3.21	3.32	3.38	3.43	3.51	3.56	3.59	3.62	3.63
1.80	0.00	0.00	0.00	1.65	2.49	2.94	3.13	3.24	3.30	3.35	3.43	3.48	3.51	3.54	3.55
1.81	3.00	0.00	0.00	1.57	2.40	2.86	3.05	31.6	3.22	3.27	3.35	3.40	3.43	3.46	3.47
1.82		0.00	0.00	1.49	2.32	2.79	2.98	3.08	3.15	3.19	3.27	3.33	3.36	3.38	3.40
1.83	•	0.00	0.00	1.41	2.25	2.71	2.90	3.00	3.07	3.11	3.19	3.25	3.28	3.31	3.32
. ,	0.00	0.00	0.00	1.34	2.17	2.63	2.82	2.93	2.99	3.04	3.12	3.18	3.21	3.23	3.25
5 1	0.00	0.00	0.00	1.26	2.09	2.56	2.75	2.85	2.92	2.97	3.05	3.10	3.13	3.16	3.17
2 5	0.00	0.00	0.00	1.19	2.02	2.48	2.68	2.78	2.85	2.89	2.97	3.03	3.06	3.09	3.10
	0.00	0.00	0.00	1.12	1.95	2.41	2.61	2.71	2.78	2.82	2.90	2.96	2.99	3.02	3.03
s :	0.00	0.00	0.00	1.06	1.88	2.34	2.54	2.64	2.71	2.75	2.83	2.89	2.92	2.95	2.96
1.89	0.00	0.00	0.00	0.99	1.81	2.28	2.47	2.57	2.64	2.69	2.77	2.83	2.85	2.88	2.90

¹Values tabulated are read in percent.

Table B-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U or		***************************************	************				Sam	ple Size	·	***************************************	************		***********		
$\ddot{ m Q}_{ m L}$	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
1.90	0.00	0.00	0.00	0.93	1.75	2.21	2.40	2.51	2.57	2.62	2.70	2.76	2.79	2.82	2.83
1.91	0.00	0.00	0.00	0.87	1.68	2.14	2.34	2.44	2.51	2.56	2.63	2.69	2.72	2.75	2.77
1.92	0.00	0.00	0.00	0.81	1.62	2.08	2.27	2.38	2.45	2.49	2.57	2.63	2.66	2.69	2.70
1.93	0.00	0.00	0.00	0.76	1.56	2.02	2.21	2.32	2.38	2.43	2.51	2.57	2.60	2.63	2.64
1.94	0.00	0.00	0.00	0.70	1.50	1.96	2.15	2.25	2.32	2.37	2.45	2.51	2.54	2.56	2.58
1.95	0.00	0.00	00.0	0.65	1.44	1.90	2.09	2.19	2.26	2.31	2.39	2.45	2.48	2.50	2.52
1.96	0.00	0.00	0.00	0.60	1.38	1.84	2.03	2.14	2.20	2.25	2.33	2.39	2.42	2.44	2.46
1.97	0.00	0.00	0.00	0.56	1.33	1.78	1.97	2.08	2.14	2.19	2.27	2.33	2.36	2.39	2.40
1.98	0.00	0.00	0.00	0.51	1.27	1.73	1.92	2.02	2.09	2.13	2.21	2.27	2.30	2.33	2.34
1.99	0.00	0.00	0.00	0.47	1.22	1.67	1.86	1.97	2.03	2.08	2.16	2.22	2.25	2.27	2.29
2.00	0.00	0.00	0.00	0.43	1.17	1.62	1.81	1.91	1.98	2.03	2.10	2.16	2.19	2.22	2.23
2.01	0.00	0.00	0.00	0.39	1.12	1.57	1.76	1.86	1.93	1.97	2.05	2.11	2.14	2.17	2.18
2.02	0.00	0.00	0.00	0.36	1.07	1.52	1.71	1.81	1.87	1.92	2.00	2.06	2.09	2.11	2.13
2.03	0.00	0.00	0.00	0.32	1.03	1.47	1.66	1.76	1.82	1.87	1.95	2.01	2.04	2.06	2.08
2.04	0.00	0.00	0.00	0.29	0.98	1.42	1.61	1.71	1.77	1.82	1.90	1.96	1.99	2.01	2.03
2.05	0.00	0.00	0.00	0.26	0.94	1.37	1.56	1.66	1.73	1.77	1.85	1.91	1.94	1.96	1.98
2.06	0.00	0.00	0.00	0.23	0.90	1.33	1.51	1.61	1.68	1.72	1.80	1.86	1.89	1.92	1.93
: 1	0.00	0.00	0.00	0.21	0.86	1.28	1.47	1.57	1.63	1.68	1.76	1.81	1.84	1.87	1.88
2.08	0.00	0.00	0.00	0.18	0.82	1.24	1.42	1.52	1.59	1.63	1.71	1.77	1.79	1.82	1.84
2.09	0.00	0.00	0.00	0.16	0.78	1.20	1.38	1.48	1.54	1.59	1.66	1.72	1.75	1.78	1.79
2.10	0.00	0.00	0.00	0.14	0.74	1.16	1.34	1.44	1.50	1.54	1.62	1.68	1.71	1.73	1.75
2.11	0.00	0.00	0.00	0.12	0.71	1.12	1.30	1.39	1.46	1.50	1.58	1.63	1.66	1.69	1.70
2.12	0.00	0.00	0.00	0.10	0.67	1.08	1.26	1.35	1.42	1.46	1.54	1.59	1.62	1.65	1.66
5 t	0.00	0.00	0.00	0.08	0.64	1.04	1.22	1.31	1.38	1.42	1.50	1.55	1.58	1.61	1.62
2.14	0.00	0.00	0.00	0.07	0.61	1.00	1.18	1.28	1.34	1.38	1.46	1.51	1.54	1.57	1.58
2.15	0.00	0.00	0.00	0.06	0.58	0.97	1.14	1.24	1.30	1.34	1.42	1.47	1.50	1.53	1.54
} {	0.00	0.00	0.00	0.05	0.55	0.93	1.10	1.20	1.26	1.30	1.38	1.43	1.46	1.49	1.50
 	0.00	0.00	0.00	0.04	0.52	0.90	1.07	1.16	1.22	1.27	1.34	1.4()	1.42	1.45	1.46
	0.00	0.00	0.00	0.03	0.49	0.87	1.03	1.13	1.19	1.23	1.30	1.36	1.39	1.41	1.42
2.19	0.00	0.00	0.00	0.02	0.46	0.83	1.00	1.09	1.15	1.20	1.27	1.32	1.35	1.38	1.39
8 t	0.000	0.000	0.000	0.015	0.437	0.803	0.968	1.160	1.120	1.160	1.233	1.287	1.314	1.340	1.352
 	0.000	0.000	0.000	0.010	0.413	0.772	0.936	1.028	1.087	1.128	1.199	1.253	1.279	1.305	1.318
:	0.000	0.000	0.000	0.006	0.389	0.734	0.905	0.996	1.054	1.095	1.166	1.219	1.245	1.271	1.284
: ;	0.000	0.000	0.000	;	i	0.715	0.874	0.965	1.023	1.063	1.134	1.186	į		1.250
s :	0.000	}	1	}	!	}	0.845			1.032		1.154	}	1.205	3
§ }	0.000	1	0.000		ł	0.660	0.816		0.962	1.002	1.071	1.123	}	1.173	3
: ;	0.000	;		0.000	1	0.634	0.789	0.876	0.933	0.972	1.041	1.092	1	1.142	1 8
\$ E	0.000		0.000	į.		0.609	0.762	0.848	0.904	0.943	1.011	1.062	ł	1.112	; ;
	0.000		0.000	}	0.267	0.585	0.735	0.821	0.876	0.915	0.982	1.033	1.058	1.082	1.095
2.29	0.000	0.000	0.000	0.000	0.250	0.561	0.710	0.794	0.849	0.887	0.954	1.004	1.029	1.053	1.065

¹Values tabulated are read in percent.

Table B-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U		***************************************					Sam	ple Size		************					
\check{Q}_L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
2.30	0.000	0.000	0.000	0.000	0.233	0.538	0.685	0.769	0.823	0.861	0.927	0.977	1.001	1.025	1.037
2.31	0.000	0.000	0.000	0.000	0.218	0.516	0.661	0.743	0.797	0.834	0.900	0.949	0.974	0.998	1.009
2.32	0.000	0.000	0.000	0.000	0.203	0.495	0.637	0.719	0.772	0.809	0.874	0.923	0.947	0.971	0.982
2.33	0.000	0.000	0.000	0.000	0.189	0.474	0.614	0.695	0.748	0.784	0.848	0.897	0.921	0.944	0.956
2.34	0.000	0.000	0.000	0.000	0.175	0.454	0.592	0.672	0.724	0.760	0.824	0.872	0.895	0.919	0.930
2.35	0.000	0.000	0.000	0.000	0.163	0.435	0.571	0.650	0.701	0.736	0.799	0.847	0.870	0.893	0.905
2.36	0.000	0.000	0.000	0.000	0.151	0.416	0.550	0.628	0.678	0.714	0.776	0.823	0.846	0.869	0.880
2.37	0.000	0.000	0.000	0.000	0.139	0.398	0.530	0.606	0.656	0.691	0.753	0.799	0.822	0.845	0.856
2.38	0.000	0.000	0.000	0.000	0.128	0.381	0.510	0.586	0.635	0.670	0.730	0.777	0.799	0.822	0.833
2.39	0.000	0.000	0.000	0.000	0.118	0.364	0.491	0.566	0.614	0.648	0.709	0.754	0.777	0.799	0.810
2.40	0.000	0.000	0.000	0.000	0.109	0.348	0.473	0.546	0.594	0.628	0.687	0.732	0.755	0.777	0.787
2.41	0.000	0.000	0.000	0.000	0.100	0.332	0.455	0.527	0.575	0.608	0.667	0.711	0.733	0.755	0.766
2.42	0.000	0.000	0.000	0.000	0.091	0.317	0.437	0.509	0.555	0.588	0.646	0.691	0.712	0.734	0.744
2.43	0.000	0.000	0.000	0.000	0.083	0.302	0.421	0.491	0.537	0.569	0.627	0.670	0.692	0.713	0.724
2.44	0.000	0.000	0.000	0.000	0.076	0.288	0.404	0.474	0.519	0.551	0.608	0.651	0.672	0.693	0.703
2.45	0.000	0.000	0.000	0.000	0.069	0.275	0.389	0.457	0.501	0.533	0.589	0.632	0.653	0.673	0.684
2.46	0.000	0.000	0.000	0.000	0.063	0.262	0.373	0.440	0.484	0.516	0.571	0.613	0.634	0.654	0.664
2.47	0.000	0.000	0.000	0.000	0.057	0.249	0.359	0.425	0.468	0.499	0.553	0.595	0.615	0.636	0.646
2.48	0.000	0.000	0.000	0.000	0.051	0.237	0.345	0.409	0.452	0.482	0.536	0.577	0.597	0.617	0.627
2.49	0.000	0.000	0.000	0.000	0.046	0.226	0.331	0.394	0.436	0.466	0.519	0.560	0.580	0.600	0.609
2.50	0.000	0.000	0.000	0.000	0.041	0.214	0.317	0.380	0.421	0.451	0.503	0.543	0.563	0.582	0.592
2.51	0.000	0.000	0.000	0.000	0.037	0.204	0.305	0.366	0.407	0.436	0.487	0.527	0.546	0.565	0.575
2.52	0.000	0.000	0.000	0.000	0.033	0.193	0.292	0.352	0.392	0.421	0.472	0.511	0.530	0.549	0.559
2.53	0.000	0.000	0.000	0.000	0.029	0.184	0.280	0.339	0.379	0.407	0.457	0.495	0.514	0.533	0.542
2.54	0.000	0.000	0.000	0.000	0.026	0.174	0.268	0.326	0.365	0.393	0.442	0.480	0.499	0.517	0.527
2.55	0.000	0.000	0.000	0.000	0.023	0.165	0.257	0.314	0.352	0.379	0.428	0.465	0.484	0.502	0.511
2.56	0.000	0.000	0.000	0.000	0.020	0.156	0.246	0.302	0.340	0.366	0.414	0.451	0.469	0.487	0.496
2.57	0.000	0.000	0.000	0.000	0.017	0.148	0.236	0.291	0.327	0.354	0.401	0.437	0.455	0.473	0.482
2.58	1	0.000	0.000	0.000	0.015	0.140	0.226	0.279	0.316	0.341	0.388	0.424	0.441	0.459	0.468
2.59	0.000	0.000	0.000	0.000	0.013	0.133	0.216	0.269	0.304	0.330	0.375	0.410	0.428	0.445	0.454
2.60	0.000	0.000	0.000	0.000	0.011	0.125	0.207	0.258	0.293	0.318	0.363	0.398	0.415	0.432	0.441
2.61	0.000	0.000	0.000	0.000	0.009	0.118	0.198	0.248	0.282	0.307	0.351	0.385	0.402	0.419	0.428
§ }	0.000	0.000	0.000	0.000	0.008	0.112	0.189	0.238	0.272	0.296	0.339	0.373	0.390	0.406	0.415
2.63	0.000	0.000	0.000	0.000	0.007	0.105	0.181	0.229		0.285	1	0.361	0.378	0.394	0.402
\$ t	!	0.000	1	0.000	0.006	0.099	0.172	1	ł	1	0.317		ł	0.382	0.390
8 1	:	0.000		0.000	0.005	0.094	0.165	0.211	0.242	0.265	0.307	0.339	0.355	0.371	0.379
2.66	0.000	0.000	0.000	0.000	ł	0.088	0.157	0.202	0.233	0.256	0.296	0.328	0.344	0.359	0.367
3	i	0.000		:	0.003	0.083	0.150	0.194	0.224	0.246	0.286	0.317	0.333	0.348	0.356
5 t	!	0.000	1	0.000	0.002	0.078	0.143	0.186	0.216	0.237	0.277	0.307	0.322	0.338	0.345
2.69	0.000	0.000	0.000	0.000	0.002	0.073	0.136	0.179	0.208	0.229	0.267	0.297	0.312	0.327	0.335

¹Values tabulated are read in percent.

Table B-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U or		***************************************			***********	***************************************	Sam	ple Size	2	***********		***********	*************	***************************************	
\breve{Q}_{L}	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
2.70	0.000	0.000	0.000	0.000	0.001	0.069	0.130	0.171	0.200	0.220	0.258	0.288	0.302	0.317	0.325
2.71	0.000	0.000	0.000	0.000	0.001	0.064	0.124	0.164	0.192	0.212	0.249	0.278	0.293	0.307	0.315
2.72	0.000	0.000	0.000	0.000	0.001	0.060	0.118	0.157	0.184	0.204	0.241	0.269	0.283	0.298	0.305
2.73	0.000	0.000	0.000	0.000	0.001	0.057	0.112	0.151	0.177	0.197	0.232	0.260	0.274	0.288	0.296
2.74	0.000	0.000	0.000	0.000	0.000	0.053	0.107	0.144	0.170	0.189	0.224	0.252	0.266	0.279	0.286
2.75	0.000	0.000	0.000	0.000	0.000	0.049	0.102	0.138	0.163	0.182	0.216	0.243	0.257	0.271	0.277
2.76	0.000	0.000	0.000	0.000	0.000	0.046	0.097	0.132	0.157	0.175	0.209	0.235	0.249	0.262	0.269
2.77	0.000	0.000	0.000	0.000	0.000	0.043	0.092	0.126	0.151	0.168	0.201	0.227	0.241	0.254	0.260
2.78	0.000	0.000	0.000	0.000	0.000	0.040	0.087	0.121	0.145	0.162	0.194	0.220	0.223	0.246	0.252
2.79	0.000	0.000	0.000	0.000	0.000	0.037	0.083	0.115	0.139	0.156	0.187	0.212	0.220	0.238	0.244
2.80	0.000	0.000	0.000	0.000	0.000	0.035	0.079	0.110	0.133	0.150	0.181	0.205	0.218	0.230	0.237
2.81	0.000	0.000	0.000	0.000	0.000	0.032	0.075	0.105	0.128	0.144	0.174	0.198	0.211	0.223	0.229
2.82	0.000	0.000	0.000	0.000	0.000	0.030	0.071	0.101	0.122	0.138	0.168	0.192	0.204	0.216	0.222
2.83	0.000	0.000	0.000	0.000	0.000	0.028	0.067	0.096	0.117	0.133	0.162	0.185	0.197	0.209	0.215
2.84	0.000	0.000	0.000	0.000	0.000	0.026	0.064	0.092	0.112	0.128	0.156	0.179	0.190	0.202	0.208
2.85	0.000	0.000	0.000	0.000	0.000	0.024	0.060	0.088	0.108	0.122	0.150	0.173	0.184	0.195	0.201
2.86	0.000	0.000	0.000	0.000	0.000	0.022	0.057	0.084	0.103	0.118	0.145	0.167	0.178	0.189	0.195
2.87	0.000	0.000	0.000	0.000	0.000	0.020	0.054	0.080	0.099	0.113	0.139	0.161	0.172	0.183	0.188
2.88	0.000	0.000	0.000	0.000	0.000	0.019	0.051	0.076	0.094	0.108	0.134	0.155	0.166	0.177	0.182
2.89	0.000	0.000	0.000	0.000	0.000	0.017	0.048	0.073	0.090	0.104	0.129	0.150	0.160	0.171	0.176
2.90	0.000	0.000	0.000	0.000	0.000	0.016	0.046	0.069	0.087	0.100	0.125	0.145	0.155	0.165	0.171
2.91	0.000	0.000	0.000	0.000	0.000	0.015	0.043	0.066	0.083	0.096	0.120	0.140	0.150	0.160	0.165
2.92	0.000	0.000	0.000	0.000	0.000	0.013	0.041	0.063	0.079	0.092	0.115	0.135	0.145	0.155	0.160
2.93	0.000	0.000	0.000	0.000	0.000	0.012	0.038	0.060	0.076	0.088	0.111	0.130	0.140	0.149	0.154
2.94	0.000	0.000	0.000	0.000	0.000	0.011	0.036	0.057	0.072	0.084	0.107	0.125	0.135	0.144	0.149
2.95	0.000	0.000	0.000	0.000	0.000	0.010	0.034	0.054	0.069	0.081	0.103	0.121	0.130	0.140	0.144
2.96	0.000	0.000	0.000	0.000	0.000	0.009	0.032	0.051	0.066	0.077	0.099	0.117	0.126	0.135	0.140
2.97	0.000	0.000	0.000	0.000	0.000	0.009	0.030	0.049	0.063	0.074	0.095	0.112	0.121	0.130	0.135
2.98	0.000	0.000	0.000	0.000	0.000	0.008	0.028	0.046	0.060	0.071	0.091	0.108	0.117	0.126	0.130
2.99	0.000	0.000	0.000	0.000	0.000	0.007	0.027	0.044	0.057	0.068	0.088	0.104	0.113	0.122	0.126
3.00	0.000	0.000	0.000	0.000	0.000	0.006	0.025	0.042	0.055	0.065	0.084	0.101	0.109	0.118	0.122
3.01	0.000	0.000	0.000	0.000	0.000	0.006	0.024	0.040	0.052	0.062	0.081	0.097	0.105	0.113	0.118
3.02	0.000	0.000	0.000	0.000	0.000	0.005	0.022	0.038	0.050	0.059	0.078	0.093	0.101	0.110	0.114
è ;	0.000	0.000	0.000	;	0.000	0.005	0.021	0.036	0.048	0.057	0.075	0.090	0.098	0.106	0.110
3.04	0.000	1	0.000	0.000	0.000	0.004	0.019	0.034	0.045	0.054	0.072	0.087	0.094	0.102	0.106
8 1	0.000	}	0.000	1		0.004	0.018	0.032	0.043	0.052	0.069	0.083	0.091	0.099	0.103
: ;	0.000	•	0.000	0.000	0.000	0.003	0.017	0.030	0.041	0.050	0.066	0.080	0.088	0.095	0.099
	0.000		0.000	0.000	0.000	0.003	0.016	0.029	0.039	0.047	0.064	0.077	0.085	0.092	0.096
3.08	0.000	0.000	0.000	0.000	0.000	0.003	0.015	0.027	0.037	0.045	0.061	0.074	0.081	0.089	0.092
3.09	0.000	0.000	0.000	0.000	0.000	0.002	0.014	0.026	0.036	0.043	0.059	0.072	0.079	0.086	0.089

¹Values tabulated are read in percent.

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Q _U						**********	Sam	ple Size	·		***************************************	***************************************		*******	***************************************
$ec{ ext{Q}_{ ext{L}}}$	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
3.10	0.000	0.000	0.000	0.000	0.000	0.002	0.013	0.024	0.034	0.041	0.056	0.069	0.076	0.083	0.086
3.11	0.000	0.000	0.000	0.000	0.000	0.002	0.012	0.023	0.032	0.039	0.054	0.066	0.073	0.080	0.083
3.12	0.000	0.000	0.000	0.000	0.000	0.002	0.011	0.022	0.031	0.038	0.052	0.064	0.070	0.077	0.080
8 1	0.000	0.000	0.000	0.000	0.000	0.002	0.011	0.021	0.029	0.036	0.050	0.061	0.068	0.074	0.077
1	0.000	0.000	0.000	0.000	0.000	0.001	0.010	0.019	0.028	0.034	0.048	0.059	0.065	0.071	0.075
	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.018	0.026	0.033	0.046	0.057	0.063	0.069	0.072
1	0.000	0.000	0.000	0.000	0.000	0.001	0.009	0.017	0.025	0.031	0.044	0.055	0.060	0.066	0.069
	0.000	0.000	0.000	0.000	0.000	0.001	0.008	0.016	0.024	0.030	0.042	0.053	0.058	0.064	0.067
•	0.000	0.000	0.000	0.000	0.000	0.001	0.007	0.015	0.022	0.028	0.040	0.050	0.056	0.062	0.065
	0.000	0.000	0.000	0.000	0.000	0.001	0.007	0.015	0.021	0.027	0.038	0.049	0.054	0.059	0.062
3.20		0.000	0.000	0.000	0.000	0.001	0.006	0.014	0.020	0.026	0.037	0.047	0.052	0.057	0.060
3.21	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.013	0.019	0.024	0.035	0.045	0.050	0.055	0.058
3.22	•	0.000	0.000	0.000	0.000	0.000	0.005	0.012	0.018	0.023	0.034	0.043	0.048	0.053	0.056
3.23	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.017	0.022	0.032	0.041	0.046	0.051	0.054
3.24	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.016	0.021	0.031	0.040	0.044	0.049 0.048	0.052 0.050
	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.010	0.015	0.020	0.030	0.038	0.043	0.048	0.050
3.27		0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.013	0.019	0.028	0.037	0.042	0.044	0.048
	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.014	0.018	0.027	0.033	0.040	0.042	0.045
} [0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.013	0.017	0.025	0.032	0.037	0.041	0.043
3.30	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.012	0.015	0.024	0.031	0.035	0.039	0.042
3.31		0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.011	0.015	0.023	0.030	0.034	0.038	0.040
	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.006	0.010	0.014	0.022	0.029	0.032	0.036	0.038
3.33	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.006	0.010	0.013	0.021	0.027	0.031	0.035	0.037
3.34	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.006	0.009	0.013	0.020	0.026	0.030	0.034	0.036
3.35	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.009	0.012	0.019	0.025	0.029	0.032	0.034
3.36	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	800.0	0.011	0.018	0.024	0.028	0.031	0.033
3.37	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.005	0.008	0.011	0.017	0.023	0.026	0.030	0.032
3.38	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.007	0.010	0.016	0.022	0.025	0.029	0.031
3.39	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.007	0.010	0.016	0.021	0.024	0.028	0.029
1	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.007	0.009	0.015	0.020	0.023	0.027	0.028
3.41	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.009	0.014	0.020	0.022	0.026	0.027
3.42		0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.006	0.008	0.014	0.019	0.022	0.025	0.026
1	0.000	;	1	0.000	}	0.000	0.001	0.003	0.005	0.008	0.013	0.018	0.021	0.024	0.025
	0.000			:	ł	1	}	0.003	}	0.007	ł	ı	i	0.023	
	0.000			0.000	ł	0.000	0.001	0.003	0.005	0.007	0.012	ì	ł	0.022	1 1
	0.000			0.000	•	0.000	0.001	0.002	0.005	0.007	0.011	0.016	5	1	0.022
	0.000	!		0.000	į.	0.000	0.001	0.002	0.004	0.006	0.011	0.015	0.018	0.020	; ;
s :	•	0.000		0.000	}	0.000	0.001	0.002	0.004	0.006	0.010	0.014	}	0.019	1
3.49	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.005	0.010	0.014	0.016	0.019	0.020

¹Values tabulated are read in percent.

and the state of t

Table B-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Standard Deviation Method¹

Qu	***************************************	***********	**********	***********	**********	***********	Sam	ple Size		***************************************		***********	***********	**********	
or Q _L	3	4	5	7	10	15	20	25	30	35	50	75	100	150	200
3.50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.005	0.009	0.013	0.015	0.018	0.019
3.51	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.005	0.009	0.013	0.015	0.017	0.018
3.52	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.005	0.008	0.012	0.014	0.016	0.018
3.53	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.008	0.011	0.014	0.016	0.017
3.54	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.008	0.011	0.013	0.015	0.016
3.55	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.007	0.011	0.012	0.015	0.016
3.56	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.007	0.010	0.012	0.014	0.015
3.57	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.010	0.011	0.013	0.014
3.58	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.009	0.011	0.013	0.014
3.59	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.009	0.010	0.012	0.013
3.60	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.008	0.010	0.012	0.013
3.61	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.008	0.010	0.011	0.012
3.62	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.008	0.009	0.011	0.012
3.63	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.007	0.009	0.010	0.011
3.64	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	800.0	0.010	0.011
3.65	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.008	0.010	0.010
3.66	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.008	0.009	0.010
3.67	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.009	0.010
3.68	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	800.0	0.009
3.69	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.007	800.0	0.009
3.70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.008	0.008
3.71	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.005	0.006	0.007	0.008
3.72	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.005	0.006	0.007	0.008
3.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.005	0.006	0.007	0.007
3.74	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.004	0.005	0.006	0.007
3.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.006	0.007
3.76	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.006	0.007
3.77	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.006	0.006
3.78	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.004	0.005	0.006
3.79	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.006
3.80	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.006
3.81	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.005
3.82	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.005	0.005
3.83	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004	0.005
3.84	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.003	0.003	0.004	0.005
s :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.004	0.004
2 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004
	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004
s :	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004
§ 1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004
3.90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.003	0.004

¹Values tabulated are read in percent.

*Table B-6*Values of F for Maximum Standard Deviation (MSD)

Sample				Accepta	nce Quali	ty Limits (normal in	spection)				
Size	T	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
3									.436	.453	.475	.502
4							.338	.353	.374	.399	.432	.472
5					.281	.294	.308	.323	.346	.372	.408	.452
7		.224	.231	.242	.253	.266	.280	.295	.318	.345	.381	.425
10	.200	.206	.214	.224	.235	.247	.261	.275	.298	.324	.359	.403
15	.188	.195	.202	.212	.222	.235	.248	.262	.284	.309	.344	.386
20	.183	.190	.197	.206	.217	.229	.242	.256	.277	.302	.336	.377
25	.180	.187	.194	.203	.213	.225	.238	.252	.273	.298	.331	.372
30	.179	.185	.192	.201	.211	.223	.236	.249	.271	.295	.329	.369
35	.176	.182	.189	.198	.208	.220	.232	.246	.267	.291	.324	.364
50	.172	.178	.185	.194	.204	.215	.227	.241	.261	.285	.317	.357
75	.168	.174	.181	.190	.199	.211	.223	.236	.256	.279	.311	.349
100	.167	.173	.179	.188	.198	.209	.220	.233	.253	.276	.308	.346
150	.164	.170	.176	.185	.195	.206	.217	.230	.250	.273	.304	.341
200	.164	.168	.176	.185	.194	.205	.217	.230	.249	.272	.303	.340

The MSD may be obtained by multiplying the factor F by the difference between the upper specification limit U and lower specification limit L. The formula is MSD = F(U - L). The MSD serves as a guide for the magnitude of the estimate of lot standard deviation when using plans for the double specification limit case, based on the estimate of lot standard deviation of unknown variability. The estimate of lot standard deviation, if it is less than the MSD, helps to insure, but does not guarantee, lot acceptability.

NOTE: There is a corresponding acceptability constant in Table B-1 for each value of F. For reduced inspection, find the acceptability constant of Table B-2 in Table B-1 and use the corresponding value of F.

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

APPENDIX B

Definitions

Symbol	Read	Definitions Definition
n		Sample size for a single lot.
$\overline{\mathrm{X}}$	X bar	Sample mean. Arithmetic mean of sample measurements from a single lot.
		$\overline{X} = \frac{\sum X}{n}$
S		Estimate of lot standard deviation. Standard deviation of sample measurements from a single lot. (See Examples in Section B.)
		$s = \sqrt{\frac{\sum X^2 - \frac{(\sum X)^2}{n}}{n-1}}$
U		Upper specification limit.
L		Lower specification limit.
k		The acceptability constant given in Tables B-1 and B-2.
$\mathbf{Q}_{ ext{U}}$	Q sub U	Quality index for use with Table B-5.
$Q_{ m L}$	Q sub L	Quality index for use with Table B-5.
$p_{ m U}$	p sub U	Sample estimate of the lot percent nonconforming above U from Table B-5.
$p_{\scriptscriptstyle m L}$	p sub L	Sample estimate of the lot percent nonconforming below L from Table B-5.
p		Total sample estimate of the lot percent nonconforming $p = p_U + p_L$.
M		Maximum allowable percent nonconforming for sample estimates given in Tables B-3 and B-4.
$\mathbf{M}_{ ext{U}}$	M sub U	Maximum allowable percent nonconforming above U given in Tables B-3 and B-4. (For use when different AQL values for U and L are specified.)
$ m M_{L}$	M sub L	Maximum allowable percent nonconforming below L given in Tables B-3 and B-4. (For use when different AQL values for U and L are specified.)
\overline{p}	p bar	Sample estimate of the process percent nonconforming, i.e., the estimated process average.
$\overline{\mathfrak{p}}_{ ext{U}}$	p bar sub U	The estimated process average for an upper specification limit.
$\overline{\mathfrak{p}}_{\mathtt{L}}$	p bar sub L	The estimated process average for a lower specification limit.
F		A factor used in determining the maximum standard deviation (MSD). The F values are given in Table B-6.
>	Greater than	Greater than.
<	Less than	Less than.
Σ	Sum of	Sum of.
T		AQL symbol denoting plan used exclusively on tightened inspection (provides identification of appropriate OC curve).

SECTION C

VARIABILITY UNKNOWN—RANGE METHOD

Part I SINGLE SPECIFICATION LIMIT

C1. SAMPLING PLAN FOR SINGLE SPECIFICATION LIMIT

This part of the standard describes the procedures for use with plans for a single specification limit when variability of the lot with respect to the quality characteristic is unknown and the range method is used. The acceptability criterion is given in two equivalent forms. These are identified as Form 1 and Form 2.

- C1.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value, the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of the Sampling Plans, and those in this part of the Standard.
- C1.2 <u>Drawing of Samples</u>. All samples shall be drawn in accordance with paragraph A7.2.
- C1.3 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

C2. SELECTING THE SAMPLE PLAN WHEN FORM 1 IS USED

- C2.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the range method are Tables C-1 and C-2. Table C-1 is used for normal and tightened inspection and Table C-2 for reduced inspection.
- C2.2 <u>Obtaining the Sample Plan</u>. The sampling plan consists of a sample size and an associated acceptability constant.¹ The sampling plan is obtained from Master Table C-1 or C-2.

- C2.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- C2.2.2 <u>Acceptability Constant</u>. The acceptability constant k, corresponding to the sample size mentioned in paragraph C.2.2.1, is indicated in the column of the master table corresponding to the applicable AQL value. Table C-1 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table C-2.

C3. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 1 IS USED²

- C3.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the quantity $(U \overline{X})/\overline{R}$ or $(\overline{X} L)/\overline{R}$.
- C3.2 <u>Computation</u>. The following quantity shall be computed: $(U \overline{X})/\overline{R}$ or $(\overline{X} L)/\overline{R}$, depending on whether the specification limit is an upper or a lower limit, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and \overline{R} is the average range of the sample.

In this standard, \overline{R} is the average range of subgroup ranges. Each of the subgroups consists of 5 measurements, except for those plans with sample size 3, 4, or 7 in which case the subgroup size is the same as the sample size and the sample range is used as \overline{R} . In computing \overline{R} , the order of the sample measurements as made must be retained. Subgroups of consecutive measurements must be formed and the range of each subgroup obtained. \overline{R} is the average of the individual subgroup ranges.

See Appendix C for definitions of all symbols used in the sampling plans based on variability unknown—range method.

²See Example C-1 for a complete example of this procedure.

C3.3 <u>Acceptability Criteria</u>. Compare the quantity $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ with the acceptability constant k. If $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/\overline{R}$ or $(\overline{X}-L)/\overline{R}$ is less than k or negative, then the lot does not meet the acceptability criterion.

C4. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 1 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table C-1 or C-2 by selecting the sample size n and the acceptability constant k.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic for each unit of the sample.
- (4) Compute the sample mean \overline{X} and the average range of the sample \overline{R} , and also compute the quantity $(U \overline{X})/\overline{R}$ for an upper specification limit U or the quantity $(\overline{X} L)/\overline{R}$ for a lower specification limit L.
- (5) If the quantity $(U \overline{X})/\overline{R}$ or $(\overline{X} L)/\overline{R}$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U \overline{X})/\overline{R}$ or $(\overline{X} L)/\overline{R}$ is less than k or negative, then the lot does not meet the acceptability criterion.

C5. SELECTING THE SAMPLING PLAN WHEN FORM 2 IS USED

- C5.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a single specification limit when using the range method are Tables C-3 and C-4 of Part II. Table C-3 is used for normal and tightened inspection and Table C-4 for reduced inspection.
- C5.2 <u>Obtaining the Sampling Plan</u>. The sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan is obtained from Master Table C-3 or C-4.

- C5.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- C5.2.2 <u>Maximum Allowable Percent Nonconforming</u>. The maximum allowable percent nonconforming M for sample estimates corresponding to the sample size mentioned in paragraphs C5.2.1 is indicated in the column of the master table corresponding to the applicable AQL value. Table C-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table C-4.

C6. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 2 IS USED³

- C6.1 Acceptability Criterion. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the percent of nonconforming product outside the upper or lower specification limit. The percentage of nonconforming product is estimated by entering Table C-5 with the quality index and the sample size.
- C6.2 <u>Computation of Quality Index</u>. The quality index $Q_U = (U \overline{X})c/\overline{R}$ shall be computed if the specification limit is an upper limit U, or $Q_L = (\overline{X} L)c/\overline{R}$ if it is a lower limit L. The quantities, \overline{X} and \overline{R} , are the sample mean and average range of the sample, respectively. The computation of \overline{R} is explained in paragraph C3.2. The factor c is provided in Master Tables C-3 and C-4 corresponding to the sample size code letter.
- C6.3 Estimate of Percent Nonconforming in Lot. The quality of a lot shall be expressed by $p_{\rm U}$, the estimated percent nonconforming in the lot above the upper specification limit, or by $p_{\rm L}$, the estimated percent nonconforming below the lower specification limit. The estimated percent nonconforming $p_{\rm U}$ or $p_{\rm L}$ is obtained by entering Table C-5 with $Q_{\rm U}$ or $Q_{\rm L}$ and the appropriate sample size.
- C6.4 Acceptability Criterion. Compare the estimated lot percent nonconforming p_U or p_L with the maximum allowable percent nonconforming M. If p_U or p_L is equal to or less than M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

³See Example C-2 for a complete example of this procedure.

C7. SUMMARY OF OPERATION OF SAMPLING PLAN WHEN FORM 2 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table C-3 or C-4 by selecting the sample size n, the factor c, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.

- (4) Compute the sample mean \overline{X} and the average range of the sample \overline{R} .
- (5) Compute the quality index $Q_U = (U \overline{X})c/\overline{R}$ if the upper specification limit U is specified, or $Q_L = (\overline{X} L)c/\overline{R}$ if the lower specification limit L is specified.
- (6) Determine the estimated lot percent nonconforming p_L or p_U from Table C-5.
- (7) If the estimated lot percent nonconforming p_L or p_U is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p_L or p_U is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

EXAMPLE C-1

Example of Calculations
Single Specification Limit—Form 1
Variability Unknown—Range Method

Example: The lower specification limit for electrical resistance of a certain electrical component is 620 ohms. A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = .4% is to be used. From Tables A-2 and C-1 it is seen that a sample of size 10 is required. Suppose that values of the sample resistances in the order reading from left to right are as follows:

643, 651, 619, 627, 658,
$$(R_1 = 658 - 619 = 39)$$

670, 673, 641, 638, 650, $(R_2 = 673 - 638 = 35)$

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size n	10	
2	Sum of Measurements: $\sum X$	6470	
3	Sample Mean (\overline{X}) : $\sum X/n$	647	6470/10
4	Average Range (\overline{R}) : $\Sigma R/no$. of subgroups	37	(39 + 35)/2
5	Specification Limit (Lower): L	620	
6	The quantity: $(\overline{X} - L)/\overline{R}$.730	(647 - 620)/37
7	Acceptability Constant: k	.811	See Table C-1
8	Acceptability Criterion: Compare $(\overline{X} - L)/\overline{R}$ with k	.730 < .811	See Para. C3.3

The lot does not meet the acceptability criterion, since $(\overline{X} - L)/\overline{R}$ is less than k.

NOTE: If a single upper specification limit U is given, then compute the quantity $(U - \overline{X})/\overline{R}$ in line 6 and compare it with k; the lot meets the acceptability criterion if $(U - \overline{X})/\overline{R}$ is equal to or greater than k.

EXAMPLE C-2

Example of Calculations
Single Specification Limit—Form 2
Variability Unknown—Range Method

Example: The lower specification limit for electrical resistance of a certain electrical component is 620 ohms. A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = .4% is to be used. From Tables A-2 and C-1 it is seen that a sample of size 10 is required. Suppose the values of the sample resistances in the order reading from left to right are as follows:

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size n	10	
2	Sum of Measurements: $\sum X$	6470	
3	Sample Mean \overline{X} : $\Sigma X/n$	647	6470/10
4	Average Range \overline{R} : $\Sigma R/no$. of subgroups	37	(39 + 35)/2
5	Factor c	2.405	See Table C-3
6	Specification Limit (Lower): L	620	
7	Quality Index: $Q_L = (\overline{X} - L)c/\overline{R}$	1.76	(647 - 620)2.405/37
8	Est. of Lot Percent Ncf.: p _L	2.54%	See Table C-5
9	Max. Allowable Percent Ncf.: M	1.14%	See Table C-3
10	Acceptability Criterion: Compare p _L with M	2.54% > 1.14%	See Para. C6.4

The lot does not meet the acceptability criterion, since p_L is greater than M.

NOTE: If a single upper specification limit U is given, then compute the quality index $Q_U = (U - \overline{X})c/\overline{R}$ in line 7 and obtain the estimate of lot percent nonconforming p_U . Compare p_U with M; the lot meets the acceptability criterion, if p_U is equal to or less than M.

Range Method Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table C-1

Sample				Ac	ceptanc	e Quali	ty Limi	Acceptance Quality Limits (normal inspection)	nal insp	ection)			
Size Code	Sample Size	÷	.10	.15	.25	04.	39.	9.1	1.50	2.50	4.00	6.50	10.00
Letter		يمد	×	هد.	.54	,¥4	.¥4	.¥4	₩.	,ist	, M	24	.w.
8	r	00000000	000000000	************************	00000000	**********		andjo-	andjir-	.587	.502	.401	.296
O	4	99999999	98888888	*********		20000000	100 M	.651	865.	.525	.450	.364	.276
D	ĸ	00000000	88888888	**********)	.663	.614	595.	.498	.431	.352	272
ш	۲-	XXXXXXXXX	88888888	**************************************	707.	659	.613	.569	.525	.465	.405	.336	.266
ĹĽ.	91	• *	***	916	863	.81	.755	.703	959.	é72.	.507	424	.341
Ð	15	1.04	666	958	903	.850	792	.738	.684	019	.536	.452	368
 	23	1.10	1.05	1.0.1	.95!	968	3335	611	.723	.647	.571	.484	398
hansi .	30	1.10	1.06	1.02	656.	904	.843	787.	.730	654	577	.490	.403
;;	94	1.13	1.08	1.04	.978	.921	998.	.803	.746	.668	.591	.503	.415
M	09	1.16	1.11	1.06	1.00	846	.885	.826	.768	689.	.610	.521	.432
m	\$2	1.17	1.13	1.08	1.02	796	668	839	.780	.701	.621	.530	441
M	115	1.19	1.14	1.09	1.03	.975	116	158.	791	.711	.631	.539	.449
z	175	1.21	1.16	ΞΞ	1.05	466.	626.	898.	.807	.726	.644	.552	.460
C.	230	1.21	1.16	1.12	1.06	966	.931	.870	808	.728	.646	.553	.462
	•	.10	.15	.25	94:	99.	1.00	1.50	2.50	4.00	6.50	10.00	
				Acc	eptance	Qualit	y Limits	Acceptance Quality Limits (tightened inspection)	ned ins	pection	_		

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve. Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or wexceeds lot size, every item in the lot must be inspected.

Master Table for Reduced Inspection for Plans Based on Variability Unknown (Single Specification Limit—Form 1) Table C-2

Sample				*	Accepta	nce Qu	Acceptance Quality Limits	mits				
Size Code	Sample Size	01.	.15	.25	04.	.65	1.00	1.50	2.50	4.00	6.50	10.00
Letter		-×	24	.×	.24	أعذر	.24	,24	,±4	,24	.×	-24
В	w	20000000	30000000	20000000				.587	.502	.401	.296	%/
U	u;	88888888	900000000	000000000	0000000	88888888		.587	.502	.401	.296	.178
D	8			0000000		********	**********	587	302	104.	.296	.178
ΙΤÌ	m	50000000	20000000	80000000	0000000	m)jja-	***	.587	.502	.401	.296	.178
[Jan	4	80000000	99999999	00000000		.651	.598	.525	.450	.364	.276	.176
Ð	10		***	***	.663	.614	.565	498	.431	.352	272	.184
Ħ		mjjb-	702	689.	.613	698.	.528	.465	.405	.336	.266	189
 	0	916	.863	811	.755	.703	959.	.579	.507	,424	341	.252
jang	5	958	903	.850	262.	.738	.684	.610	.536	.452	368	.276
ist	25	1.0.1	156.	968.	.835	977.	.723	.647	.571	.484	398	305
<u>,</u>	30	1.02	656.	206.	.843	.787	.730	.654	577	.490	.403	310
M	33.	1.02	964	908	.848	791	.734	.658	.581	494	904.	.313
Z	09	1.06	1.00	.948	885	.826	.768	689	919	.521	.432	.336
<u>c.</u>	85	1.08	1.02	.962	668.	839	.780	.701	.621	.530	.441	.345
Secretarion of the second	-	decement	-	***********	· · · · · · · · · · · · · · · · · · ·	derererererere						

All AQL values are in percent nonconforming.

Use first sampling plan below arrow; that is, both sample size as well as k value. When sample size equals or exceeds lot size, every item in the lot must be inspected.

Part II DOUBLE SPECIFICATION LIMIT

C8. SAMPLING PLAN FOR DOUBLE SPECIFICATION LIMIT

This part of the standard describes the procedures for use with plans for a double specification limit when variability of the lot with respect to the quality characteristic is unknown and the range method is used.

C8.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value(s), the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the standard.

C9. SELECTING THE SAMPLE PLAN

A sampling plan for each AQL value shall be selected from Table C-3 or C-4 as follows:

- C9.1 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.
- C9.2 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability unknown for a double specification limit when using the range method are Tables C-3 and C-4. Table C-3 is used for normal and tightened inspection and Table C-4 for reduced inspection.
- C9.3 <u>Obtaining Sampling Plan</u>. A sampling plan consists of a sample size and the associated maximum allowable percent nonconforming. The sampling plan to be applied in inspection shall be obtained from Master Table C-3 or C-4.
- C9.3.1 <u>Sample Size</u>. The sample size n is shown in the master tables corresponding to each sample size code letter.
- C9.3.2 <u>Maximum Allowable Percent Nonconforming</u>. The maximum allowable percent nonconforming for sample estimates of percent nonconforming for the lower, upper, or both specification limits combined, corresponding to the sample size mentioned in paragraph C9.3.1, is shown in the column of the master table corresponding to

the applicable AQL value(s). If different AQLs are assigned to each specification limit, designate the maximum allowable percent nonconforming by $M_{\rm L}$ for the lower limit, and by $M_{\rm U}$ for the upper limit. If one AQL is assigned to both limits combined, designate the maximum allowable percent nonconforming by M. Table C-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table C-4.

C10. DRAWING OF SAMPLES

Samples shall be selected in accordance with paragraph A7.2.

C11. LOT-BY-LOT ACCEPTABILITY PROCEDURES

- C11.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a double specification limit shall be judged by the percent of nonconforming product. The percentage of nonconforming product is estimated by entering Table C-5 with the quality index and the sample size.
- C11.2 <u>Computation of Quality Indices</u>. The quality indices $Q_U = (U \overline{X})c/\overline{R}$ and $Q_L = (\overline{X} L)c/\overline{R}$ shall be computed, where

U is the upper specification limit, L is the lower specification limit, c is a factor provided in Tables C-3 and C-4, \overline{X} is the sample mean, and \overline{R} is the average range of the sample.

In this standard, \overline{R} is the average range of the subgroup ranges. Each of the subgroups consists of 5 measurements, except for those plans with sample size 3, 4, or 7 in which case the subgroup size is the same as the sample size and the sample range is used as \overline{R} . In computing \overline{R} , the order of the sample measurements as made must be retained. Subgroups of consecutive measurements must be formed and the range of each subgroup obtained. \overline{R} is the average of the individual subgroup ranges.

C11.3 Percent Nonconforming in the Lot. The quality of a lot shall be expressed in terms of the lot percent nonconforming. Its estimate will be designated by p_L , p_U , or p. The estimate p_U indicates conformance with respect to the upper specification limit, p_L with respect to the lower specification limit, and p for both specification limits combined. The estimate p_L and p_U shall be determined by entering Table C-5, respectively with Q_L and Q_U and the sample size. The estimate p shall be determined by adding the corresponding estimated percents nonconforming p_L and p_U found in the table.

C12. ACCEPTABILITY CRITERION AND SUMMARY FOR OPERATION OF SAMPLING PLANS

- C12.1 <u>One AQL Value for Both Upper and Lower</u> Specification Limit Combined.
- C12.1.1 <u>Acceptability Criterion.</u> Compare the estimated lot percent nonconforming $p = p_U + p_L$ with the maximum allowable percent nonconforming M. If p is equal to or less than M, the lot meets the acceptability criterion; if p is greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- C12.1.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a single AQL value is established for the upper and lower specification limit combined for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Select plan from Master Table C-3 or C-4. Obtain the sample size n, the factor c, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
- (4) Compute the sample mean \overline{X} and average range of the sample \overline{R} .

- (5) Compute the quality indices $Q_U = (U \overline{X})c/\overline{R}$ and $Q_L = (\overline{X} L)c/\overline{R}$.
- (6) Determine the estimated lot percent nonconforming $p = p_U + p_L$ from Table C-5.
- (7) If the estimated lot percent nonconforming p is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p is greater than M or if either Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- C12.2 <u>Different AQL Values for Upper and Lower Specification Limit.</u>
- C12.2.1 Acceptability Criteria. Compare the estimated lot percent nonconforming p_L and p_U with the corresponding maximum allowable percents nonconforming M_L and M_U ; also compare $p=p_L+p_U$ with the larger of M_L and M_U . If p_L is equal to or less than M_L , p_U is equal to or less than M_U , and p is equal to or less than the larger of M_L and M_U , the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.
- C12.2.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a different AQL value is established for the upper and lower specification limit for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and inspection level.
- (2) Select the sampling plan from Master Table C-3 or C-4. Obtain the sample size n, the factor c, and the maximum allowable percent nonconforming M_{U} and M_{L} , corresponding to AQL values for the upper and lower specification limits, respectively.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit in the sample.

 $^{^4\}mbox{See}$ Example C-3 for a complete example of this procedure.

⁵See Example C-4 for a complete example of this procedure.

- (4) Compute the sample mean \overline{X} and average range of the sample $\overline{R}.$
- (5) Compute the quality indices $Q_U=(U-\overline{X})c/\overline{R}$ and $Q_L=(\overline{X}-L)c/\overline{R}.$
- (6) Determine the estimated lot percents nonconforming p_U and p_L , corresponding to the percents nonconforming above the upper and below the lower specification limits. Also determine the combined percent nonconforming $p = p_U + p_L$.
- (7) If all three of the following conditions:
 - (a) p_U is equal to or less than M_U ,
 - (b) p_L is equal to or less than M_L ,
 - (c) p is equal to or less than the larger of $M_{\rm L}$ and $M_{\rm U},$

are satisfied, the lot meets the acceptability criteria; otherwise the lot does not meet the acceptability criteria. If either $Q_{\rm L}$ or $Q_{\rm U}$ or both are negative, then the lot does not meet the acceptability criteria.

EXAMPLE C-3

Example of Calculations

Double Specification Limit

Variability Unknown—Average Range Method

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The specifications for electrical resistance of a certain electrical component are 650 ± 30 ohms. A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = .4% is to be used. From Tables A-2 and C-3 it is seen that a sample of size 10 is required. Suppose the values of the sample resistance in the order reading from left to right are as follows:

643, 651, 619, 627, 658,
$$(R_1 = 658 - 619 = 39)$$

670, 673, 641, 638, 650, $(R_2 = 673 - 638 = 35)$

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Garanta G' ann	10	
1	Sample Size: n	10	
2	Sum of Measurements: $\sum X$	6470	
3	Sample Mean \overline{X} : $\sum X/n$	647	6470/10
4	Average Range \overline{R} : $\sum R/no$. of subgroups	37	(39 + 35)/2
5	Factor c	2.405	See Table C-3
6	Upper Specification Limit: U	680	
7	Lower Specification Limit: L	620	
8	Quality Index: $Q_U = (U - \overline{X})c/\overline{R}$	2.15	(680 - 647)2.405/37
9	Quality Index: $Q_L = (\overline{X} - L)c/\overline{R}$	1.76	(647 - 620)2.405/37
10	Est. of Lot Percent Ncf. above U: p _U	0.35%	See Table C-5
11	Est. of Lot Percent Ncf. below L: p _L	2.54%	See Table C-5
12	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.89%	0.35% + 2.54%
13	Max. Allowable Percent Ncf.: M	1.14%	See Table C-3
14	Acceptability Criterion: Compare $p = p_U + p_L$ with M	2.89% > 1.14%	See Para. C12.1.2(7)

The lot does not meet the acceptability criterion, since $p = p_U + p_L$ is greater than M.

EXAMPLE C-4

Example of Calculations

Double Specification Limit

Variability Unknown—Average Range Method

Different AQL Value for Upper and Lower Specification Limits

<u>Example:</u>

The specifications for electrical resistance of a certain electrical component are 650 ± 30 ohms. A lot of 100 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 2.5% for the upper and AQL = 1% for the lower specification limit is to be used. From Tables A-2 and C-3 it is seen that a sample of size 10 is required. Suppose the values of the sample resistances in the order reading from left to right are as follows:

and compliance with the acceptability critera is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	10	
2	Sum of Measurements: $\sum X$	6470	
3	Sample Mean \overline{X} : $\sum X/n$	647	6470/10
4	Average Range \overline{R} : $\Sigma R/no$. of subgroups	37	(39 + 35)/2
5	Factor c	2.405	See Table C-3
6	Upper Specification Limit: U	680	
7	Lower Specification Limit: L	620	
8	Quality Index: $Q_U = (U - \overline{X})c/\overline{R}$	2.15	(680 - 647)2.405/37
9	Quality Index: $Q_L = (\overline{X} - L)c/\overline{R}$	1.76	(647 - 620)2.405/37
10	Est. of Lot Percent Ncf. above U: p _U	0.35%	See Table C-5
11	Est. of Lot Percent Ncf. below L: p _L	2.54%	See Table C-5
12	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	2.89%	0.35% + 2.54%
13	Max. Allowable Percent Ncf. above U: $M_{\rm U}$	7.42%	See Table C-3
14	Max. Allowable Percent Ncf. below L: M_L	3.23%	See Table C-3
15	Acceptability Criteria: (a) Compare p_U with M_U	0.35% < 7.42%	See Para. C12.2.2(7)(a)
	(b) Compare p_L with M_L	2.54% < 3.23%	See Para. C12.2.2(7)(b)
	(c) Compare p with $M_{\rm U}$	2.89% < 7.42%	See Para. C12.2.2(7)(c)

The lot meets the acceptability criteria, since 15(a), (b), and (c) are satisfied; i.e., $p_U \le M_U$, $p_L \le M_L$, and $p \le M_U$.

Range Method Master Table for Normal and Tightened Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit) Table C-3

Sample	,	-			Ac	ceptanc	Acceptance Quality Limits (normal inspection)	ty Limi	ts (norn	nal insp	ection)			
Size Code	Sample Size	c factor	<u>[</u>	3.0	ī.	25	.40	.65	90.1	1.50	2.50	4.00	6.50	10.00
Letter			M	M	M	M	Z	M	Z	M	M	M	M	M
æ	æ	0.910	88888888	0000000	000000000	00000000			***	***	7.59	18.86	26.94	33.69
O	4	2.234	88888888	***********	98888888	500000000	200000000	might-	1.53	5.50	10.92	16.45	22.86	29.45
Δ	S	2.474	\$\$\$\$\$\$\$\$\$\$\$	**********	888888888		englio-	1.42	3,44	5.93	9.90	14,47	20.27	26.59
	r~.	2.830	8888888	*************	*	.28	86	1.99	3.46	5.32	8,47	12.35	17.54	23.50
æ	10	2.405	***	*	.23	.58	1.14	2.05	3.23	4.77	7.42	10.79	15.49	21.06
Ğ	15	2.379	.136	.253	.430	987.	1.30	2.10	3.11	4.44	6.76	9.76	14.09	19.30
II	25	2.358	214	.336	506	.827	1.27	1.95	2.82	3.96	5.98	8.65	12.59	17.48
inni	30	2.353	.240	.366	.537	.856	1.29	1.96	2.81	3.92	5.88	8.50	12.36	17.19
<u> </u>	40	2.346	.252	.375	.539	.842	1.25	1.88	2.69	3.73	5.61	8.11	11.84	16.55
24	09	2.339	.244	.356	504	.781	1.16	1.74	2.47	3.44	5.17	7.54	11.10	15.64
⊢	% %	2.335	.242	.350	.493	.755	1.12	1.67	2.37	3.30	4.97	7.27	10.73	15.17
M	115	2.333	.230	.333	.468	.718	1.06	1.58	2.25	3.14	4.76	6.99	10.37	14.74
Z	175	2.331	.210	.303	.427	.655	.972	1.46	2.08	2.93	4.47	09'9	68.6	14.15
ů.	230	2.330	.215	.308	.432	.661	976.	1.47	2.08	2.92	4.46	6.57	9,84	14.10
			.10	,i ,i	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00	
					Acc	eptance	Acceptance Quality Limits (tightened inspection)	y Limit:	s (tighte	ned ins	pection)			

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Range Method

Master Table for Reduced Inspection for Plans Based on Variability Unknown (Double Specification Limit and Form 2—Single Specification Limit) Table C-4

***************************************	***************************************	**********		**********		******	*******	*******	******	********		*******	******	*******		~~~~
	10.00	×	40.47	40.47	40.47	40.47	36.90	33.95	30.66	27.90	25.92	23.79	23.42	23.21	21.63	21.05
	6.50	M	33.69	33.69	33.69	33.69	29.45	26.59	23.50	21.06	19.30	17.48	17.19	17.03	15.64	15.17
	4.00	M	26.94	26.94	26.94	26.94	22.86	20.27	17.54	15,49	14.09	12.59	12.36	12.24	11.10	10.73
	2.50	×	18.86	18.86	18.86	18.86	16.45	14.47	12.35	10.79	92.6	8.65	8.50	8.42	7.54	7.27
mits	1.50	M	7.59	7.59	7.59	7.59	10.92	9.90	8.47	7.42	6.76	5.98	5.88	5.85	5.17	4.97
Acceptance Quality Limits	1.00	M	30000000			*****	5.50	5.93	5.32	4.77	4.44	3.96	3.92	3.90	3.44	3.30
ance Qu	99	M	500000000	88888888	500000000	enggle-	1.53	3.44	3.46	3.23	3.11	2.82	2.81	2.82	2.47	2.37
Accepts	.40	M	300000000	0000000		20000000	ennighto	1.42	1.99	2.05	2.10	1.95	3.96	1.98	1.74	1.67
,	.25	M	00000000	***********		9999999		***	68.	1.14	1.30	1.27	1.29	1.33	1.16	1.12
	.15	Z	99999999	XXXXXXXXX	90000000	9999999	00000000	**************************************	.28	.58	.786	.827	958.	.883	.781	.755
	.10	ĸ	888888888	9999999	888888888	8088888	58888888	2000000000	*	.23	.430	.506	.537	.564	504	.493
	c factor		1.910	1.910	1.910	1.910	2.234	2.474	2.830	2.405	2.379	2.358	2.353	2.349	2.339	2.335
ŗ	Sample Size		£	æ	U)	ייי	4	K	ţ~.	10	15	25	30	35	09	85
Sample	Size Code	Letter	a	O	Ω	[11]	ŢŢ.	Ö	in in the second		£	×		Z	Z	e,

All AQL values are in percent nonconforming.

Table C-5
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Qu		*********	**********				Sam	ple Size	**********	***********		***************************************			
or Q _L	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
0	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
.1	47.24	46.67	46.44	46.29	46.20	46.13	46.08	46.07	46.06	46.05	46.04	46.03	46.03	46.02	46.02
.2	44.46	43.33	42.90	42.60	42.42	42.29	42.19	42.17	42.16	42.15	42.12	42.10	42.10	42.08	42.08
.3	41.63	40.00	39.37	38.95	38.70	38.51	38.38	38.34	38.32	38.31	38.27	38.26	38.24	38.23	38.22
.31	41.35	39.67	39.02	38.59	38.33	38.14	38.00	37.96	37.94	37.93	37.89	37.88	37.86	37.85	37.84
.32	41.06	39.33	38.67	38.23	37.96	37.77	37.63	37.59	37.57	37.55	37.51	37.50	37.48	37.47	37.46
.33	40.77	39.00	38.32	37.87	37.60	37.39	37.25	37.21	37.19	37.18	37.14	37.12	37.11	37.09	37.09
.34	1	38.67	37.97	37.51	37.23	37.02	36.88	36.84	36.82	36.80	36.76	36.74	36.73	36.71	36.71
.35	40.20	38.33	37.62	37.15	36.87	36.65	36.50	36.46	36,44	36.43	36.39	36.37	36.36	36.34	36.33
.36	1	38.00	37.28	36.79	36.50	36.29	36.13	36.09	36.07	36.05	36.01	35.99	35.97	35.96	35.96
.37	39.62	37.67	36.93	36.43	36.14	35.92	35.76	35.72	35.70	35.68	35.64	35.62	35.61	35.59	35.59
.38	1	37.33	36.58	36.07	35.78	35.55	35.39	35.35	35.33	35.31	35.27	35.25	35.24	35.22	35.22
.39	39.03	37.00	35.62	35.72	35.41	35.19	35.02	34.98	34.96	34,94	34.90	34.88	34.87	34.85	34.85
.40	38.74	36.67	35.88	35.36	35.05	34.82	34.66	34.62	34.59	34.58	34.53	34.51	34.49	34.48	34.48
.41	38.45	36.33	35.54	35.01	34.69	34.46	34.29	34.25	34.23	34.21	34.17	34.14	34.12	34.11	34.11
.42	38.15	36.00	35.19	34.65	34.33	34.10	33.93	33.89	33.86	33.85	33.80	33.78	33.77	33.75	33.74
.43	37.85	35.67	34.85	34.30	33.98	33.74	33.57	33.53	33.50	33.48	33,44	33.41	33.39	33.38	33.38
.44	37.56	35.33		33.95	33.62	33.38	33.21	33.17	33.14	33.12	33.08	33.05	33.03	33.02	33.02
.45	37.26	35.00	34.16	33.60	33.27	33.02	32.85	32.81	32.78	32.76	32.72	32.69	32.67	32.66	32.66
.46	36.96	34.67		33.24	32.91	32.66	32.49	32.45	32.42	32.40	32.36	32.33	32.31	32.30	32.30
.47	1	34.33		32.89	32.56	32.31	32.13	32.09	32.06	32.04	32.00	31.97	31.95	31.94	31.94
.48	36.35	34.00		32.55	32.21	31.96	31.78	31.74	31.71	31.69	31.64	31.62	31.61	31.59	31.58
.49	36.05	33.67	32.78	32.20	31.86	31.60	31.42	31.38	31.35	31.33	31.29	31.26	31.24	31.23	31.23
.50	35.75	33.33	32.44	31.85	31.51	31.25	31.07	31.03	31.00	30.98	30.94	30.91	30.89	30.88	30.87
.51	35.44	33.00	32.10	31.51	31.16	30.90	30.72	30.68	30.65	30.63	30.59	30.55	30.55	30.53	30.52
.52	35.13	32.67		31.16	30.81	30.55	30.37	30.33	30.30	30.28	30.24	30.21	30.19	30.18	30.17
.53	34.82	32.33	1	30.82	30.46	30.21	30.02	29.98	29.95	29.93	29.89	29.86	29.84	29.83	29.83
.54	1	32.00	1	30.47	30.12	29.86	29.68	29.64	29.61	29.59	29.54	29.52	29.50	29.48	29.48
.55	1			30.13	29.78	29.52	29.33	29.29	29.26	29.24	29.20	29.17	29.15	29.14	29.14
.56	1		30.40	29.79	29.44	29.18	28.99	28.95	28.92	28.90	28.86	28.83	28.81	28.80	28.79
.57	1		1	29.45	29.09	28.83	28.65	28.61	28.58	28.56	28.52	28.49	28.47	28.46	28.45
.58	;	30.67	29.73	29.11	28.76	28.50	28.31	28.27	28.24	28.22	28.18	28.15	28.13	28.12	28.12
.59	ļ			28.77	28.42	28.16	27.97	27.93	27.91	27.89	27.84	27.82	27.80		27.78
E ;	32.61		1	;	}	}	27.64			27.55	27.51	27.48	1		27.45
\$ }	32.28		1	t .	!	:				27.22	ł	2	2		, ,
5 !	31.96									26.89	}	1	1		3
2 1	31.63	i	1	į.	į.				26.58	1	26.51	1	i	26.46	1 1
1 1	31.30		1	27.11	į.	26.50	26.32	26.28	26.25	26.23	26.19	1	į	26.13	: {
£ 2	30.97		!	26.78	26.42		25.99	25.95	25.92	25.90	25.86	25.84	ł		25.80
8 1	30.63		1	26.45	26.10	:	25.67	25.63	25.60	25.58	25.54	\$	}	25.48	, ,
2 5	30.30			26.12	25.77		25.34	25.30	25.28	25.26	25.22	25.20	\$	25.16	: S
2 1	29.96	i	i	25.79	i		25.02	24.98	24.96	24.94	24.90	24.88	ł .		24.84
.69	29.61	27.00	26.07	25.47	25.12	24.88	24.71	24.67	24.64	24.62	24.58	24.56	24.55	24.53	24.53

¹Values tabulated are read in percent.

Table C-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or		***********	************			************	Sam	ple Size	·	************			************	************	
Q _L	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
.70	29.27	26.67	25.74	25.14	24.80	24.56	24.39	24.35	24.32	24.31	24.27	24.25	24.24	24.22	24.21
.71	28.92	26.33	25.41	24.82	24.48	24.24	24.07	24.03	24.01	23.99	23.95	23.93	23.91	23.90	23.90
.72	28.57	26.00	25.09	24.50	24.17	23.93	23.76	23.72	23.70	23.68	23.64	23.62	23.60	23.59	23.59
.73	28.22	25.67	24.76	24.18	23.85	23.61	23.45	23.41	23.39	23.37	23.33	23.32	23.30	23.29	23.29
.74	27.86	25.33	24,44	23.86	23.54	23.30	23.14	23.10	23.08	23.07	23.03	23.01	23.00	22.98	22.98
.75	27.50	25.00	24.11	23.55	23.22	22.99	22.84	22.80	22.78	22.76	22.72	22.71	22.69	22.68	22.68
.76	27.13	24.67	23.79	23.23	22.91	22.69	22.53	22.49	22.47	22.46	22.42	22.41	22.39	22.38	22.38
.77	26.76		1	22.92	22.60	22.38	22.23	22.19	22.17	22.16	22.12	22.11	22.09	22.08	22.08
.78	26.39	24.00	1	22.60	22.30	22.08	21.93	21.90	21.88	21.86	21.83	21.81	21.80	21.78	21.78
.79	26.02	23.67	22.83	22.29	21.99	21.78	21.64	21.60	21.58	21.57	21.53	21.52	21.50	21.49	21.49
.80	25.64	23.33	22.51	21.98	21.69	21.48	21.34	21.30	21.28	21.27	21.24	21.22	21.22	21.20	21.20
.81	25.25	23.00	22.19	21.68	21.39	21.18	21.04	21.01	20.99	20.98	20.95	20.93	20.93	20.91	20.91
.82	24.86	22.67	21.87	21.37	21.09	20.89	20.75	20.72	20.70	20.69	20.66	20.64	20.64	20.62	20.62
.83	24.47	22.33	21.56	21.06	20.79	20.59	20.46	20.43	20.41	20.40	20.37	20.36	20.35	20.34	20.34
.84	24.07	22.00	21.24	20.76	20.49	20.30	20.17	20.15	20.13	20.12	20.09	20.08	20.06	20.06	20.06
.85	23.67	21.67	20.93	20.46	20.20	20.01	19.89	19.87	19.85	19.84	19.81	19.79	19.79	19.78	19.78
.86	23.26	21.33	20.62	20.16	19.90	19.73	19.60	19.58	19.57	19.56	19.54	19.52	19.51	19.50	19.50
.87	22.84	21.00	20.31	19.86	19.61	19.44	19.32	19.31	19.29	19.28	19.25	19.24	19.24	19.22	19.22
.88	22.42	20.67	20.00	19.57	19.33	19.16	19.04	19.03	19.01	19.00	18.98	18.97	18.96	18.95	18.95
.89	21.99	20.33	19.69	19.27	19.04	18.88	18.77	18.75	18.74	18.73	18.70	18.69	18.69	18.68	18.68
.90	21.55	20.00	19.38	18.98	18.75	18.60	18.50	18.48	18.47	18.46	18.43	18.42	18.42	18.41	18.41
.91	21.11	19.67	19.07	18.69	18.47	18.32	18.22	18.21	18.20	18.19	18.17	18.17	18.16	18.15	18.15
.92	20.66	19.33	18.77	18.40	18.19	18.05	17.96	17.95	17.93	17.92	17.90	17.89	17.89	17.88	17.88
.93	20.20	19.00		18.11	17.91	17.78	17.69	17.68	17.67	17.66	17.65	17.63	17.63	17.62	17.62
.94	19.74	18.67	18.16	17.82	17.64	17.51	17.43	17.42	17.41	17.40	17.39	17.37	17.37	17.36	17.36
.95	19.25	18.33		17.54	17.36	17.24	17.17	17.16	17.15	17.14	17.13	17.12	17.12	17.11	17.11
.96	18.76	18.00	1	17.26	17.09	16.98	16.91	16.90	16.89	16.88	16.87	16.86	16.86	16.86	16.86
.97	18.25	17.67	1	16.97	16.82	16.71	16.65	16.64	16.63	16.63	16.62	16.61	16.61	16.60	16.60
.98	17.74	17.33	16.96	16.70	16.55	16.45	16.39	16.38	16.38	16.37	16.37	16.36	16.36	16.36	16.36
.99	17.21	17.00	16.66	16.42	16.28	16.19	16.14	16.13	16.13	16.12	16.12	16.11	16.11	16.11	16.11
1.00	16.67	16.67	16.36	16.14	16.02	15.94	15.89	15.88	15.88	15.88	15.87	15.87	15.87	15.87	15.87
1.01	16.11	16.33	16.07	15.87	15.76	15.68	15.64	15.63	15.63	15.63	15.63	15.62	15.62	15.62	15.62
1.02	;	16.00		:	15.50	15.43	15.40	15.39	15.39	15.39	15.39	15.38	15.38	15.38	15.38
E ;	14.93		i	15.33	i	15.18	15.15	15.15	15.15	15.15	15.15	15.15	1	15.15	1 5
	14.31			!	!	!	}	14.91	14.91	14.91	14.91	14.91	ł	14.91	; ≀
8 1	13.66		1	l	ł	}	14.67	14.67	14.67	14.67	14.68	14.68	i .	14.68	}
	12.98				•		14,44	14,44	14,44	14,44	14,44	14.45	\$	14.45	1 8
1	12.27		1	•	•	14.21	14.20	14.21	14.21	14.21	14.21	14.22	1	1	14.22
S 1	11.51		1	t .	!	13.97	13.97	13.98	13.98	13.98	13.99	13.99	1	14.00	3
1.09	10.71	13.67	13.76	13.75	13.74	13.73	13.74	13.75	13.75	13.75	13.76	13.77	13.77	13.78	13.78

¹Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or	***********	*************	************				Sam	ple Size)		***************************************				
$ec{ ext{Q}}_{ ext{L}}$	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
1.10	9.84	13.33	13.48	13.50	13.49	13.50	13.52	13.52	13.52	13.53	13.54	13.55	13.55	13.56	13.56
1.11	8.89	13.00	13.20	13.24	13.25	13.27	13.29	13.30	13.30	13.31	13.32	13.32	13.33	13.34	13.34
1.12	7.82	12.67	12.93	12.99	13.02	13.04	13.07	13.08	13.08	13.09	13.10	13.12	13.12	13.12	13.12
1.13	6.60	12.33	12.65	12.74	12.78	12.81	12.85	12.86	12.86	12.87	12.89	12.89	12.90	12.91	12.91
1.14		12.00	12.37	12.49	12.55	12.59	12.63	12.64	12.65	12.66	12.67	12.69	12.69	12.70	12.70
1.15	0.29	11.67	12.10	12.25	12.31	12.37	12.42	12.43	12.44	12.45	12.46	12.48	12.48	12.49	12.49
1.16		11.33	!	12.00	12.08	12.15	12.21	12.22	12.23	12.24	12.25	12.27	12.28	12.29	12.29
1.17	0.00	11.00	11.56	11.76	11.86	11.93	12.00	12.01	12.02	12.03	12.06	12.07	12.07	12.08	12.08
1.18	0.00	10.67	11.29	11.52	11.63	11.71	11.79	11.80	11.81	11.82	11.84	11.86	11.88	11.88	11.88
1.19	0.00	10.33	11.02	11.29	11.41	11.50	11.58	11.60	11.61	11.62	11.65	11.66	11.68	11.69	11.69
1.20	0.00	10.00	10.76	11.05	11.19	11.29	11.38	11.40	11.41	11.42	11.45	11.47	11.47	11.49	11.49
1.21	0.00	9.67	10.50	10.82	10.97	11.08	11.18	11.20	11.21	11.22	11.26	11.27	11.29	11.30	11.30
1.22	0.00	9.33	10.23	10.59	10.76	10.88	10.98	11.00	11.02	11.03	11.06	11.08	11.09	11.10	11.10
1.23	0.00	9.00	9.97	10.36	10.54	10.67	10.78	10.80	10.82	10.84	10.87	10.89	10.90	10.91	10.91
1.24	0.00	8.67	9.72	10.13	10.33	10.47	10.58	10.61	10.63	10.64	10.68	10.70	10.71	10.73	10.73
1.25		8.33	9.46	9.91	10.12	10.27	10.39	10.42	10.44	10.46	10.49	10.51	10.52	10.54	10.54
1.26	0.00	8.00	9.21	9.69	9.92	10.08	10.20	10.24	10.26	10.27	10.31	10.33	10.34	10.36	10.36
1.27	0	7.67	8.96	9.47	9.71	9.88	10.01	10.05	10.07	10.09	10.13	10.15	10.17	10.18	10.18
1.28	0.00	7.33	8.71	9.25	9.51	9.69	9.83	9.87	9.89	9.90	9.95	9.97	9.99	10.00	10.00
1.29	0.00	7.00	8.46	9.04	9.31	9.50	9.64	9.68	9.71	9.72	9.77	9.79	9.81	9.83	9.83
1.30	0.00	6.67	8.21	8.83	9.11	9.32	9.47	9.51	9.53	9.55	9.59	9.62	9.64	9.65	9.65
1.31	0.00	6.33	7.97	8.62	8.92	9.13	9.29	9.33	9.35	9.37	9.42	9.45	9.47	9.48	9.48
1.32	0.00	6.00	7.73	8.41	8.73	8.95	9.11	9.15	9.18	9.20	9.25	9.28	9.30	9.31	9.31
1.33	0.00	5.67	7.49	8.20	8.54	8.77	8.94	8.98	9.01	9.03	9.08	9.11	9.13	9.14	9.15
1.34	0.00	5.33	7.25	8.00	8.35	8.59	8.77	8.81	8.84	8.86	8.91	8,94	8.96	8.98	8.98
1.35	0.00	5.00	7.02	7.80	8.16	8.41	8.60	8.64	8.67	8.69	8.75	8.78	8.80	8.82	8.82
1.36	0.00	4.67	6.79	7.60	7.98	8.24	8.43	8.48	8.51	8.53	8.59	8.62	8.64	8.66	8.66
1.37	0.00	4.33	6.56	7.40	7.80	8.07	8.27	8.31	8.34	8.37	8.43	8.46	8.48	8.50	8.50
1.38	0.00	4.00	6.33	7.21	7.62	7.90	8.11	8.15	8.18	8.21	8.26	8.30	8.32	8.34	8.35
1.39	0.00	3.67	6.10	7.02	7.45	7.73	7.95	7.99	8.02	8.05	8.11	8.14	8.17	8.19	8.19
1.40	0.00	3.33	5.88	6.83	7.27	7.57	7.79	7.84	7.88	7.90	7.96	8.00	8.02	8.03	8.04
1.41	0.00	3.00	5.66	6.65	7.10	7.41	7.63	7.68	7.71	7.74	7.81	7.85	7.87	7.88	7.89
1.42	0.00	2.67	5.44	6.46	6.93	7.25	7.48	7.53	7.56	7.59	7.66	7.70	7.72	7.74	7.74
1.43		2.33	5.23	6.28	6.76	7.09	7.33	7.38	7.41	7.44	7.51	7.54	7.57	7.59	7.60
8 1	0.00	2.00	5.01	6.10	6.60	6.93	7.18	7.24	7.28	7.30	7.37	7.41	7.43	7.45	7.46
1.45		1.67	4.81	5.93	6.44	6.78	7.03	7.09	7.13	7.15	7.23	7.27	7.29	7.30	7.32
1.46		1.33	4.60	5.75	6.28	6.63	6.89	6.95	6.99	7.01	7.09	7.13	7.15	7.17	7.18
1.47		1.00	4.39	5.58	6.12	6.48	6.74	6.80	6.85	6.87	6.95	6.99	7.01	7.03	7.04
1.48	!	0.67	4.19	5.41	5.96	6.34	6.60	6.66	6.71	6.73	6.81	6.85	6.87	6.89	6.90
1.49	0.00	0.33	3.99	5.24	5.81	6.19	6.47	6.53	6.57	6.60	6.67	6.72	6.74	6.76	6.77

¹Values tabulated are read in percent.

Table C-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or			***************************************			***************************************	Sam	ple Size		***************************************		************	***************************************		
\ddot{Q}_L	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
1.50	0.00	0.00	3.80	5.08	5,66	6.05	6.33	6.39	6.43	6.46	6.54	6.58	6.61	6.63	6.64
1.51	0.00	0.00	3.61	4.92	5.51	5.91	6.19	6.25	6.30	6.33	6.41	6.45	6.48	6.50	6.51
1.52	0.00	0.00	3.42	4.76	5.37	5.77	6.06	6.12	6.17	6.20	6.28	6.32	6.35	6.37	6.38
1.53	!	0.00	3.23	4.60	5.22	5.64	5.93	5.99	6.04	6.07	6.15	6.20	6.22	6.25	6.26
1.54	:	0.00	3.05	4.45	5.08	5.50	5.80	5.86	5.91	5.95	6.03	6.07	6.10	6.12	6.14
1.55	i	0.00	2.87	4.30	4.94	5.37	5.68	5.74	5.79	5.82	5.90	5.95	5.98	6.00	6.01
1.56	!	0.00	2.69	4.15	4.81	5.24	5.55	5.62	5.67	5.70	5.78	5.83	5.86	5.88	5.89
1.57	!	0.00	2.52	4.01	4.67	5.11	5.43	5.50	5.55	5.58	5.66	5.71	5.74	5.77	5.79
1.58	1	0.00	2.35	3.86	4.54	4.99	5.31	5.38	5.43	5,46	5.55	5.59	5.62	5.65	5.66
1.59	0.00	0.00	2.19	3.72	4.41	4.86	5.19	5.26	5.31	5.34	5.43	5.48	5.51	5.53	5.55
1.60	0.00	0.00	2.03	3.58	4.28	4.74	5.08	5.14	5.19	5.23	5.32	5.36	5.39	5.42	5.43
1.61	1	0.00	1.87	3.45	4.16	4.62	4.96	5.03	5.08	5.12	5.20	5.25	5.28	5.31	5.32
1.62	i	0.00	1.72	3.31	4.03	4.51	4.85	4.92	4.97	5.01	5.09	5.14	5.17	5.20	5.22
1.63	0.00	0.00	1.57	3.18	3.91	4.39	4.74	4.81	4.86	4.90	4.99	5.04	5.07	5.10	5.12
1.64	i	0.00	1.42	3.06	3.79	4.28	4.63	4.70	4.75	4.79	4.88	4.93	4.96	4.99	5.00
1.65	}	0.00	1.28	2.93	3.68	4.17	4.52	4.59	4.64	4.68	4.77	4.83	4.86	4.89	4.91
1.66	1	0.00	1.15	2.81	3.56	4.06	4.41	4.49	4.54	4.58	4.67	4.72	4.75	4.79	4.81
1.67	i	0.00	1.02	2.69	3.45	3.95	4.31	4.39	4.44	4.48	4.57	4.62	4.65	4.69	4.71
1.68	0.00	0.00	0.89	2.57	3.34	3.85	4.21	4.29	4.34	4.38	4.47	4.53	4.56	4.59	4.61
1.69	 	0.00	0.77	2.46	3.23	3.74	4.10	4.19	4.24	4.28	4.37	4.43	4.46	4.49	4.51
1.70	;	0.00	0.66	2.35	3.13	3.64	4.00	4.09	4.14	4.18	4.28	4.33	4.36	4.40	4.42
1.71	i	0.00	0.55	2.24	3.02	3.54	3.92	3.99	4.05	4.09	4.18	4.24	4.27	4.30	4.31
1.72	0.00	0.00	0.45	2.13	2.92	3.45	3.82	3.90	3.95	3.99	4.09	4.15	4.18	4.21	4.23
1.73	:	0.00	0.36	2.03	2.82	3.35	3.73	3.81	3.86	3.90	4.00	4.06	4.09	4.12	4.14
1.74	i	0.00	0.27	1.93	2.73	3.26	3.63	3.72	3.77	3.81	3.91	3.97	4.00	4.03	4.05
1.75	!	0.00	0.19	1.83	2.63	3.16 3.07	3.54	3.63	3.68	3.72	3.82	3.88	3.91	3.94	3.96 3.88
1.76 1.77	i	0.00	0.12 0.06	1.73 1.64	2.54 2.45	2.99	3.45	3.54 3.45	3.59 3.51	3.63 3.55	3.74 3.65	3.79 3.71	3.82	3.86 3.77	3.79
1.78	1	0.00	0.03	1.55	2.36	2.99	3.28	3.43	3.43	3.33	3.57	3.62	3.65	3.69	3.71
1.79	į	0.00	0.02	1.46	2.27	2.81	3.20	3.28	3.34	3.38	3.49	3.54	3.57	3.61	3.63
1.80	ļ	0.00	0.00	1.38	2.19	2.73	3.11	3.20	3.26	3.30	3.41	3.46	3.49	3.53	3.55
1.81	0.00	0.00	0.00	1.38	2.19	2.73	3.03	3.12	3.18	3.22	3.33	3.38	3.49	3.33 3.45	3.33 3.47
1.82	1	0.00	0.00	1.29	2.10	2.63	2.96	3.05	3.11	3.15	3.25	3.31	3.34	3.43	3.39
1 1	0.00	0.00	0.00	1.14	1.94	2.49	2.88	2.97	3.03	3.07	3.17	3.23	3.26	3.30	3.32
	0.00	0.00	0.00	1.06	1.87	2.49	2.80	2.89	2.95	2.99	3.10	3.16	3.19	3.22	3.24
. ,	0.00	0.00	0.00	0.99	1.79	2.34	2.73	2.82	2.88	2.92	3.03	3.08	3.11	3.15	3.17
5 !	0.00	0.00	0.00	0.92	1.72	2.27	2.66	2.75	2.81	2.85	2.95	3.01	3.04	3.08	3.10
	0.00	0.00	0.00	0.86	1.65	2.20	2.59	2.68	2.74	2.78	2.88	2.94	2.97	3.01	3.03
	0.00	0.00	0.00	0.79	1.58	2.13	2.52	2.61	2.67	2.71	2.81	2.87	2.90	2.94	2.96
1 2	0.00	0.00	0.00	0.73	1.51	2.06	2.45	2.54	2.60	2.64	2.75	2.81	2.84	2.87	2.89

¹Values tabulated are read in percent.

Table C-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or					***********	**************	Sam	ple Size		**************	************		************		
$\ddot{ m Q}_{ m L}$	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
1.90	0.00	0.00	0.00	0.67	1.45	1.99	2.38	2.47	2.53	2.57	2.68	2.74	2.77	2.81	2.83
1.91	0.00	0.00	0.00	0.62	1.38	1.93	2.32	2.41	2.47	2.51	2.61	2.67	2.70	2.74	2.76
1.92	0.00	0.00	0.00	0.56	1.32	1.86	2.25	2.34	2.41	2.45	2.55	2.61	2.64	2.68	2.70
1.93	0.00	0.00	0.00	0.51	1.26	1.80	2.19	2.28	2.34	2.38	2.49	2.55	2.58	2.61	2.63
1.94	0.00	0.00	0.00	0.46	1.20	1.74	2.13	2.22	2.28	2.32	2.43	2.49	2.52	2.55	2.57
1.95	0.00	0.00	00.0	0.42	1.15	1.68	2.07	2.16	2.22	2.26	2.37	2.43	2.46	2.49	2.51
1.96	0.00	0.00	0.00	0.37	1.09	1.62	2.01	2.10	2.16	2.20	2.31	2.37	2.40	2.43	2.45
1.97	0.00	0.00	0.00	0.33	1.04	1.57	1.95	2.04	2.10	2.14	2.25	2.31	2.34	2.38	2.40
1.98	0.00	0.00	0.00	0.30	0.99	1.51	1.90	1.99	2.05	2.09	2.19	2.25	2.28	2.32	2.34
1.99	0.00	0.00	0.00	0.26	0.94	1.46	1.84	1.93	1.99	2.03	2.14	2.20	2.23	2.26	2.28
2.00	0.00	0.00	0.00	0.23	0.89	1.41	1.79	1.88	1.94	1.98	2.08	2.14	2.17	2.21	2.23
2.01	0.00	0.00	0.00	0.20	0.84	1.36	1.74	1.83	1.89	1.93	2.03	2.09	2.12	2.16	2.18
2.02	0.00	0.00	0.00	0.17	0.80	1.31	1.69	1.78	1.83	1.87	1.98	2.04	2.07	2.10	2.12
2.03	0.00	0.00	0.00	0.14	0.75	1.26	1.64	1.73	1.78	1.82	1.93	1.99	2.02	2.05	2.07
2.04	0.00	0.00	0.00	0.12	0.71	1.21	1.59	1.68	1.73	1.77	1.88	1.94	1.97	2.00	2.02
2.05	0.00	0.00	0.00	0.10	0.67	1.17	1.54	1.63	1.69	1.73	1.83	1.89	1.92	1.95	1.97
2.06	0.00	0.00	0.00	0.08	0.63	1.12	1.49	1.58	1.64	1.68	1.78	1.84	1.87	1.91	1.93
2.07	0.00	0.00	0.00	0.06	0.60	1.08	1.45	1.54	1.59	1.63	1.74	1.79	1.82	1.86	1.88
2.08	0.00	0.00	0.00	0.05	0.56	1.04	1.40	1.49	1.55	1.59	1.69	1.75	1.78	1.81	1.83
2.09	0.00	0.00	0.00	0.03	0.53	1.00	1.36	1.45	1.50	1.54	1.64	1.70	1.73	1.77	1.79
2.10	0.00	0.00	0.00	0.02	0.49	0.96	1.32	1.41	1.46	1.50	1.60	1.66	1.69	1.72	1.74
2.11	0.00	0.00	0.00	0.01	0.46	0.92	1.28	1.36	1.42	1.46	1.56	1.61	1.64	1.68	1.70
2.12	0.00	0.00	0.00	0.00	0.43	0.88	1.24	1.32	1.38	1.42	1.52	1.57	1.60	1.64	1.66
5 t	0.00	0.00	0.00	0.00	0.40	0.85	1.20	1.28	1.34	1.38	1.48	1.53	1.56	1.60	1.62
2.14	0.00	0.00	0.00	0.00	0.38	0.81	1.16	1.25	1.30	1.34	1.44	1.49	1.52	1.56	1.58
2.15	0.00	0.00	0.00	0.00	0.35	0.78	1.13	1.21	1.26	1.30	1.40	1.45	1.48	1.52	1.54
} {	0.00	0.00	0.00	0.00	0.32	0.75	1.09	1.17	1.22	1.26	1.36	1.41	1.44	1.48	1.50
 	0.00	0.00	0.00	0.00	0.30	0.71	1.06	1.13	1.18	1.22	1.32	1.38	1.41	1.44	1.46
	0.00	0.00	0.00	0.00	0.28	0.68	1.02	1.10	1.15	1.19	1.28	1.34	1.37	1.40	1.41
ļ	0.00	0.00	0.00	0.00	0.26	0.65	0.99	1.06	1.11	1.15	1.25	1.30	1.33	1.37	1.39
8 t	0.000	0.000	0.000	0.000	0.236	0.625	0.954	1.030	1.083	1.122	1.214	1.267	1.299	1.330	1.346
 	0.000	0.000	0.000	0.000	0.217	0.597	0.922	0.997	1.058	1.089	1.180	1.233	1.265	1.295	1.311
:	0.000	0.000	0.000	0.000	0.199	0.570	0.891	0.966	1.018	1.056	1.147	1.199	1.231	1.261	1.277
: ;	0.000	0.000	0.000	;	i	0.544	0.861	0.935	0.986	1.025	1.115	1.167	1		1.244
s :	0.000	!	!	:			0.831		0.956		1.083	ł	}	1.195	3
§ }	0.000	1	0.000		0.150		0.802	0.875	0.926	0.964	1.052	1.104	1	1.163	3
: ;	0.000	•		0.000			0.775	0.847	0.897	0.935	1.022	1.073	i	1.132	1 1
\$ E	0.000	į.	0.000	i		0.449	0.748	0.819	0.869	0.906	0.993	1.043	1	1.103	1 8
.)	0.000	•	0.000	0.000	0.111	0.427	0.722	0.792	0.841	0.878	0.964	1.014	1.044	1.073	1.088
2.29	0.000	0.000	0.000	0.000	0.099	0.406	0.697	0.766	0.814	0.851	0.936	0.986	1.015	1.044	1.059

¹Values tabulated are read in percent.

Table C-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or		*************	************		************		Sam	ple Size	·						
\breve{Q}_{L}	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
2.30	0.000	0.000	0.000	0.000	0.089	0.386	0.672	0.741	0.789	0.825	0.909	0.959	0.988	1.016	1.031
2.31	0.000	0.000	0.000	0.000	0.079	0.367	0.648	0.716	0.763	0.799	0.882	0.931	0.960	0.988	1.003
2.32	0.000	0.000	0.000	0.000	0.070	0.348	0.624	0.691	0.739	0.774	0.856	0.905	0.934	0.962	0.976
2.33	0.000	0.000	0.000	0.000	0.061	0.330	0.601	0.668	0.715	0.750	0.831	0.879	0.908	0.935	0.950
E }	0.000	0.000	0.000	0.000	0.054	0.313	0.579	0.645	0.691	0.720	0.807	0.854	0.882	0.909	0.924
2.35	0.000	0.000	0.000	0.000	0.047	0.296	0.558	0.623	0.669	0.703	0.782	0.829	0.857	0.884	0.889
} [0.000	0.000	0.000	0.000	0.040	0.280	0.538	0.602	0.646	0.680	0.759	0.806	0.833	0.860	0.874
	0.000	0.000	0.000	0.000	0.035	0.265	0.518	0.580	0.624	0.658	0.736	0.782	0.809	0.836	0.850
	0.000	0.000	0.000	0.000	0.029	0.250	0.498	0.560	0.604	0.637	0.714	0.759	0.787	0.813	0.827
2.39	0.000	0.000	0.000	0.000	0.025	0.236	0.479	0.541	0.584	0.616	0.693	0.737	0.764	0.791	0.804
2.40	0.000	0.000	0.000	0.000	0.021	0.223	0.461	0.521	0.564	0.596	0.671	0.715	0.742	0.769	0.782
2.41	0.000	0.000	0.000	0.000	0.017	0.210	0.443	0.503	0.545	0.577	0.651	0.695	0.721	0.747	0.760
2.42	0.000	0.000	0.000	0.000	0.014	0.198	0.426	0.485	0.526	0.557	0.631	0.674	0.701	0.726	0.739
	0.000	0.000	0.000	0.000	0.011	0.186	0.410	0.467	0.508	0.539	0.611	0.654	0.679	0.705	0.718
	0.000	0.000	0.000	0.000	0.009	0.175	0.393	0.450	0.491	0.521	0.593	0.635	0.660	0.685	0.698
2.45	0.000	0.000	0.000	0.000	0.007	0.165	0.378	0.434	0.473	0.503	0.573	0.616	0.641	0.665	0.678
 	0.000	0.000	0.000	0.000	0.005	0.154	0.362	0.417	0.456	0.486	0.556	0.597	0.622	0.646	0.659
	0.000	0.000	0.000	0.000	0.004	0.145	0.348	0.403	0.441	0.470	0.538	0.579	0.604	0.627	0.640
2.48	0.000	0.000	0.000	0.000	0.003	0.136	0.333	0.387	0.425	0.454	0.522	0.562	0.586	0.609	0.622
2.49	0.000	0.000	0.000	0.000	0.002	0.127	0.321	0.372	0.409	0.438	0.504	0.545	0.569	0.593	0.605
1	0.000	0.000	0.000	0.000	0.001	0.118	0.307	0.358	0.395	0.423	0.489	0.528	0.552	0.575	0.587
2.51	0.000	0.000	0.000	0.000	0.001	0.111	0.294	0.345	0.381	0.409	0.473	0.512	0.536	0.558	0.570
} [0.000	0.000	0.000	0.000	0.000	0.103	0.282	0.331	0.367	0.394	0.458	0.497	0.519	0.542	0.553
	0.000	0.000	0.000	0.000	0.000	0.096	0.270	0.319	0.354	0.381	0,444	0.481	0.503	0.526	0.537
1	0.000	0.000	0.000	0.000	0.000	0.089	0.258	0.306	0.340	0.367	0.428	0.466	0.488	0.510	0.522
1	0.000	0.000	0.000	0.000	0.000	0.083	0.247	0.294	0.328	0.354	0.415	0.451	0.473	0.495	0.506
} [0.000	0.000	0.000	0.000	0.000	0.077	0.237	0.283	0.316	0.341	0.401	0.437	0.459	0.480	0.491
	0.000	0.000	0.000	0.000	0.000	0.071	0.227	0.272	0.304	0.328	0.388	0.424	0.445	0.466	0.477
1	0.000	0.000	0.000	0.000	0.000	0.066	0.217	0.261	0.292	0.317	0.376	0.411	0.432	0.452	0.463
-	0.000	0.000	0.000	0.000	0.000	0.061	0.207	0.251	0.282	0.305	0.363	0.397	0.418	0.439	0.449
2.60	0.000	0.000	0.000	0.000	0.000	0.056	0.198	0.240	0.271	0.294	0.351	0.385	0.406	0.426	0.436
2.61	0.000	0.000	0.000	0.000	0.000	0.052	0.189	0.231	0.260	0.283	0.339	0.372	0.393	0.413	0.423
1	0.000	0.000	0.000	0.000	0.000	0.048	0.181	0.221	0.250	0.273	0.327	0.360	0.381	0.400	0.410
1	0.000	0.000	0.000		0.000	0.044	0.173	0.212	0.241	0.263	0.316	0.349	0.368	0.388	0.398
1	0.000			1					1	}	}	0.338	}		3
 	0.000		0.000	0.000	0.000	0.037	0.157	0.195	0.223	0.244	0.295	0.327	}	0.365	0.375
	0.000	0.000		0.000	0.000	0.034	0.149	0.186	0.213	0.234	0.285	0.316	į	0.353	1 8
1	0.000		0.000	0.000	0.000	0.031	0.143	0.179	0.205	0.225	0.275	0.305	ł	0.342	0.352
s :	0.000	0.000	0.000	0.000	0.000	0.028	0.136	0.171	0.197	0.217	0.266	0.296	0.314	0.332	0.342
2.69	0.000	0.000	0.000	0.000	0.000	0.025	0.129	0.164	0.190	0.209	0.257	0.286	0.304	0.321	0.331

¹Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or		***********		***************************************	***********	**********	Sam	ple Size)			************	***********	***********	
\breve{Q}_{L}	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
2.70	0.000	0.000	0.000	0.000	0.000	0.023	0.123	0.156	0.182	0.201	0.248	0.277	0.295	0.311	0.321
2.71	0.000	0.000	0.000	0.000	0.000	0.021	0.117	0.150	0.174	0.193	0.239	0.267	0.285	0.302	0.311
2.27	0.000	0.000	0.000	0.000	0.000	0.019	0.111	0.143	0.167	0.185	0.231	0.259	0.275	0.292	0.301
2.73	0.000	0.000	0.000	0.000	0.000	0.017	0.106	0.137	0.160	0.178	0.222	0.250	0.266	0.283	0.292
2.74	0.000	0.000	0.000	0.000	0.000	0.015	0.101	0.131	0.153	0.171	0.215	0.241	0.258	0.274	0.282
2.75	0.000	0.000	0.000	0.000	0.000	0.014	0.096	0.125	0.147	0.164	0.207	0.233	0.248	0.266	0.274
2.76	0.000	0.000	0.000	0.000	0.000	0.012	0.091	0.120	0.141	0.158	0.200	0.225	0.241	0.257	0.265
2.77	0.000	0.000	0.000	0.000	0.000	0.011	0.086	0.114	0.135	0.152	0.192	0.217	0.232	0.249	0.257
2.78	0.000	0.000	0.000	0.000	0.000	0.010	0.081	0.109	0.130	0.146	0.185	0.210	0.226	0.241	0.249
2.79	0.000	0.000	0.000	0.000	0.000	800.0	0.077	0.103	0.124	0.140	0.179	0.202	0.218	0.233	0.241
2.80	0.000	0.000	0.000	0.000	0.000	0.007	0.074	0.099	0.118	0.134	0.172	0.196	0.210	0.225	0.233
2.81	0.000	0.000	0.000	0.000	0.000	0.007	0.070	0.094	0.113	0.129	0.165	0.189	0.204	0.218	0.226
2.82	0.000	0.000	0.000	0.000	0.000	0.006	0.066	0.090	0.109	0.123	0.159	0.183	0.194	0.211	0.219
2.83	0.000	0.000	0.000	0.000	0.000	0.005	0.062	0.085	0.103	0.118	0.154	0.176	0.190	0.204	0.212
2.84	0.000	0.000	0.000	0.000	0.000	0.004	0.059	0.082	0.099	0.113	0.148	0.170	0.184	0.197	0.205
2.85	0.000	0.000	0.000	0.000	0.000	0.004	0.055	0.078	0.095	0.109	0.143	0.164	0.178	0.191	0.198
2.86	0.000	0.000	0.000	0.000	0.000	0.003	0.053	0.074	0.091	0.104	0.137	0.159	0.172	0.185	0.192
2.87	0.000	0.000	0.000	0.000	0.000	0.003	0.050	0.070	0.087	0.100	0.132	0.152	0.166	0.179	0.185
2.88	0.000	0.000	0.000	0.000	0.000	0.002	0.047	0.067	0.082	0.095	0.127	0.147	0.160	0.173	0.179
2.89	0.000	0.000	0.000	0.000	0.000	0.002	0.044	0.064	0.079	0.091	0.122	0.142	0.155	0.167	0.173
2.90	0.000	0.000	0.000	0.000	0.000	0.002	0.042	0.061	0.075	0.088	0.117	0.138	0.149	0.161	0.168
2.91	0.000	0.000	0.000	0.000	0.000	0.001	0.039	0.057	0.072	0.084	0.112	0.132	0.145	0.156	0.162
2.92	0.000	0.000	0.000	0.000	0.000	0.001	0.037	0.055	0.069	0.080	0.107	0.127	0.140	0.151	0.157
2.93	0.000	0.000	0.000	0.000	0.000	0.001	0.035	0.052	0.066	0.077	0.104	0.123	0.134	0.146	0.151
2.94	0.000	0.000	0.000	0.000	0.000	0.001	0.033	0.049	0.062	0.073	0.100	0.118	0.129	0.141	0.146
2.95	0.000	0.000	0.000	0.000	0.000	0.001	0.031	0.047	0.059	0.070	0.096	0.114	0.125	0.136	0.142
2.96	0.000	0.000	0.000	0.000	0.000	0.001	0.029	0.044	0.056	0.067	0.092	0.110	0.121	0.132	0.137
1	0.000	0.000	0.000	0.000	0.000	0.000	0.027	0.042	0.054	0.064	0.088	0.105	0.116	0.127	0.132
2.98	1	0.000	0.000	0.000	0.000	0.000	0.025	0.039	0.051	0.061	0.085	0.101	0.112	0.123	0.128
2.99	0.000	0.000	0.000	0.000	0.000	0.000	0.024	0.038	0.049	0.058	0.082	0.098	0.108	0.119	0.124
3.00	i	0.000	0.000	0.000	0.000	0.000	0.022	0.036	0.047	0.056	0.078	0.094	0.105	0.115	0.120
3.01	0.000	0.000	0.000	0.000	0.000	0.000	0.022	0.034	0.044	0.053	0.075	0.091	0.101	0.111	0.116
	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.032	0.042	0.050	0.072	0.087	0.097	0.107	0.112
E ;	0.000		;					0.030	0.040	0.048	0.069	į	1	1	0.108
	0.000		1	!			ł	ł		ł	}	ł	ł	0.099	; ;
8 1	0.000		1				0.016	0.027	0.036	1	0.064	0.078	0.086	0.096	, ,
2 5	0.000		;		0.000		0.015	0.025	0.034	0.041	0.061	0.075	0.083	0.092	• •
	0.000		i I	i	0.000		0.014	0.024	0.032	0.039	0.059	0.072	0.080	0.089	; {
£ 2	0.000		!	ł .	0.000		0.013	0.022	0.030	0.037	0.056	0.069	0.077	0.086	0.091
3.09	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.021	0.029	0.036	0.054	0.067	0.075	0.083	0.088

¹Values tabulated are read in percent.

Table C-5—Continued
Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or		*************					Sam	ple Size)			************			
\breve{Q}_{L}	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
3.10	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.020	0.027	0.034	0.051	0.064	0.072	0.080	0.085
3.11	0.000	0.000	0.000	0.000	0.000	0.000	0.011	0.019	0.026	0.032	0.050	0.061	0.069	0.077	0.082
3.12	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.018	0.025	0.031	0.048	0.060	0.067	0.074	0.079
3.13	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.017	0.024	0.029	0.046	0.057	0.064	0.072	0.075
3.14	0.000	0.000	0.000	0.000	0.000	0.000	0.009	0.015	0.022	0.028	0.044	0.055	0.062	0.069	0.073
	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.014	0.021	0.026	0.042	0.053	0.060	0.067	0.070
	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.014	0.020	0.025	0.040	0.051	0.057	0.064	0.067
	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.013	0.019	0.024	0.038	0.049	0.056	0.062	0.065
1	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.012	0.017	0.022	0.036	0.046	0.053	0.060	0.063
3.19	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.012	0.017	0.021	0.034	0.044	0.052	0.057	0.060
3.20	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.016	0.020	0.033	0.043	0.049	0.055	0.058
3.21	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.010	0.015	0.019	0.032	0.041	0.047	0.053	0.056
3.22	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.014	0.018	0.031	0.040	0.045	0.051	0.054
[0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.013	0.017	0.029	0.037	0.043	0.049	0.052
1	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.009	0.013	0.016	0.028	0.037	0.042	0.047	0.050
1	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.008	0.012	0.015	0.027	0.035	0.040	0.046	0.049
1	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.011	0.015	0.025	0.033	0.039	0.044	0.047
;	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.007	0.011	0.014	0.024	0.032	0.037	0.042	0.045
1	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.006	0.010	0.013	0.023	0.031	0.036	0.040	0.043 0.042
	 	ļ		 	ļ							ļ			}}
 	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.005	0.009	0.012	0.021	0.028	0.033	0.037	0.040
3.31	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.005	0.008	0.011	0.021	0.027	0.032	0.036 0.034	0.039
1	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.007	0.010	0.020	0.025	0.029	0.034	0.037
1	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.007	0.009	0.018	0.023	0.028	0.033	0.035
 	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.007	0.009	0.013	0.023	0.023	0.031	0.033
1	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.006	0.008	0.016	0.022	0.026	0.030	0.032
1	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.004	0.006	0.008	0.015	0.021	0.024	0.028	0.031
1	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.014	0.019	0.024	0.027	0.030
3.39	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.014	0.019	0.022	0.027	0.029
3.40	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.013	0.018	0.021	0.026	0.028
3.41	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.012	0.018	0.021	0.025	0.027
3.42	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.012	0.017	0.020	0.024	0.026
3.43	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.011	0.016	0.019	0.023	0.025
3.44	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.011	0.015	0.018	0.022	0.024
3.45	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.011	0.014	0.017	0.021	0.023
3.46	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.010	0.014	0.017	0.020	0.022
3.47	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.010	0.014	0.016	0.019	0.021
3.48	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.009	0.013	0.015	0.018	0.020
3.49	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.004	0.009	0.012	0.015	0.018	0.020

¹Values tabulated are read in percent.

Table C-5—Continued

Table for Estimating the Lot Percent Nonconforming Using Range Method¹

Q _U or							Sam	ple Size	·						
\ddot{Q}_{L}	3	4	5	7	10	15	25	30	35	40	60	85	115	175	230
3.50	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.008	0.012	0.014	0.017	0.019
3.51	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.008	0.011	0.014	0.016	0.018
3.52	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.010	0.013	0.016	0.017
3.53	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.010	0.013	0.015	0.016
3.54	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.007	0.010	0.012	0.014	0.015
3.55	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.006	0.009	0.012	0.014	0.015
3.56	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.006	0.009	0.011	0.013	0.014
3.57	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	800.0	0.011	0.012	0.013
3.58	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.008	0.010	0.012	0.013
3.59	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.008	0.010	0.011	0.012
3.60	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.005	0.007	0.009	0.011	0.012
3.61	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.009	0.011	0.011
3.62	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.007	0.009	0.010	0.011
3.63	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.004	0.006	0.008	0.010	0.010
3.64	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.006	0.088	0.009	0.010
3.65	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.003	0.006	0.008	0.009	0.010
3.66	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.009	0.009
3.67	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.007	0.008	0.009
3.68	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.003	0.005	0.006	800.0	0.008
3.69	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.008	0.008
3.70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.008
3.71	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.007
3.71	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.007
3.73	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.006	0.007	0.007
3.74	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.004	0.005	0.006	0.007
3.75	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.006
3.76	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.006
3.77	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.005	0.006	0.006
3.78	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.004	0.005	0.005
3.79	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.80	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.81	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.82	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.005	0.005
3.83	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.003	0.003	0.004	0.004
3.84	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.002	0.003	0.004	0.004
3.85	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.86	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.87	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.88	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.004
3.89	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.003
3.90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.003	0.003

¹Values tabulated are read in percent.

Table C-6 Values of f for Maximum Average Range (MAR)

Sample			Ac	cceptance	Quality L	imits (in p	ercent nor	neonformi	ng)			***************************************
Size	T	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
3									.833	.865	.907	.958
4							.756	.788	.836	.891	.965	1.056
5						.730	.764	.801	.857	.923	1.011	1.118
7				.695	.727	.765	.804	.846	.910	.985	1.086	1.209
10			.529	.553	.579	.610	.642	.677	.730	.793	.876	.977
15	.460	.477	.493	.517	.542	.572	.602	.637	.688	.748	.830	.928
25	.432	.447	.463	.486	.509	.537	.567	.600	.649	.707	.785	.879
30	.426	.442	.457	.480	.503	.531	.560	.593	.642	.699	.776	.870
35	.423	.438	.454	.476	.499	.527	.556	.588	.637	.694	.771	.864
40	.417	.432	.447	.469	.492	.519	.548	.580	.628	.684	.761	.852
50	.411	.426	.441	.463	.486	.503	.542	.573	.621	.676	.752	.843
60	.405	.419	.434	.455	.478	.505	.533	.564	.608	.666	.740	.830
85	.398	.412	.427	.448	.470	.497	.525	.555	.602	.656	.729	.818
115	.392	.406	.421	.442	.464	.490	.517	.548	.594	.648	.720	.808
175	.384	.399	.413	.434	.455	.481	.508	.538	.584	.637	.708	.794
230	.384	.397	.412	.432	.454	.480	.507	.536	.582	.633	.706	,792

The MAR may be obtained by multiplying the factor f by the difference between the upper specification limit U and lower specification limit L. The formula is MAR = f(U - L). The MAR serves as a guide for the magnitude of the average range of the sample when using plans for the double specification limit case, based on the average range of the sample of unknown variability. The average range of the sample, if it is less than the MAR, helps to insure, but does not guarantee, lot acceptability.

NOTE: There is a corresponding acceptability constant in Table C-1 for each value of f. For reduced inspection, find the acceptability constant of Table C-2 in Table C-1 and use the corresponding value of f.

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

APPENDIX C

Definitions

Symbol	Read	Definition
n		Sample size for a single lot.
$\overline{\mathbf{X}}$	X bar	Sample mean. Arithmetic mean of sample measurements from a single lot.
R		Range. The difference between the largest and smallest measurements in a subgroup. In this standard, the subgroup size is 5 except for those plans in which $n=3,4,$ or 7, in which case the subgroup is the same as the sample size.
R_1		Range of the first subgroup.
R_2		Range of the second subgroup.
\overline{R}	R bar	Average range. The arithmetic mean of the range values of the subgroups of the sample measurements from a single lot.
U		Upper specification limit.
L		Lower specification limit.
k		The acceptability constant given in Tables C-1 and C-2.
c		A factor used in determining the quality index when using the range method. The c values are given in Tables C-3 and C-4.
$\mathbf{Q}_{ ext{U}}$	Q sub U	Quality Index for use with Table C-5.
${f Q}_{ m L}$	Q sub L	Quality Index for use with Table C-5.
$p_{ m U}$	p sub U	Sample estimate of the lot percent nonconforming above U from Table C-5.
$p_{ m L}$	p sub L	Sample estimate of the lot percent nonconforming below L from Table C-5.
p		Total sample estimate of the lot percent nonconforming $p = p_U + p_L$.
M		Maximum allowable percent nonconforming for sample estimates given in Tables C-3 and C-4.
$\mathbf{M}_{ ext{U}}$	M sub U	Maximum allowable percent nonconforming above U given in Tables C-3 and C-4. (For use when different AQL values for U and L are specified.)
$ m M_{L}$	M sub L	Maximum allowable percent nonconforming below L given in Tables C-3 and C-4. (For use when different AQL values for U and L are specified.)
\overline{p}	p bar	Sample estimate of the process percent nonconforming, i.e., the estimated process average.
$\overline{p}_{ ext{U}}$	p bar sub U	The estimated process average for an upper specification limit.
$\overline{p}_{ extsf{L}}$	p bar sub L	The estimated process average for a lower specification limit.
f		A factor used in determining the Maximum Average Range (MAR). The f values are given in Table C-6.
>	Greater than	Greater than.
<	Less than	Less than.
\sum	Sum of	Sum of.
T		AQL symbol denoting plan used exclusively on tightened inspection (provides identification of appropriate OC curve).

SECTION D

VARIABILITY KNOWN

Part I SINGLE SPECIFICATION LIMIT

D1. SAMPLING PLAN FOR SINGLE SPECIFICATION LIMIT

This part of the standard describes the procedures for use with plans for a single specification limit when variability of the lot with respect to the quality characteristic is known. The acceptability criterion is given in two equivalent forms. These are identified as Form 1 and Form 2.

- D1.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value, the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of the Sampling Plans, and those in this part of the standard.
- D1.2 <u>Drawing of Samples</u>. All samples shall be drawn in accordance with paragraph A7.2.
- D1.3 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

D2. SELECTING THE SAMPLING PLAN WHEN FORM 1 IS USED

- D2.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability known for a single specification limit are Tables D-1 and D-2. Table D-1 is used for normal and tightened inspection and Table D-2 for reduced inspection.
- D2.2 <u>Obtaining Sampling Plan</u>. The sampling plan consists of a sample size and an associated acceptability constant.¹ The sampling plan is obtained from Master Table D-1 and D-2.

- D2.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter and AQL.
- D2.2.2 Acceptability Constant. The acceptability constant k, corresponding to the sample size mentioned in paragraph D2.2.1, is indicated in the column of the master table corresponding to the applicable AQL value. Table D-1 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table D-2.

D3. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 1 IS USED²

- D3.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the quantity $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$.
- D3.2 <u>Computation</u>. The following quantity shall be computed: $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$, depending on whether the specification limit is an upper or a lower limit, where

U is the upper specification limit, L is the lower specification limit, \overline{X} is the sample mean, and σ is the known variability.

D3.3 Acceptability Criteria. Compare the quantity $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ with the acceptability constant k. If $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U-\overline{X})/\sigma$ or $(\overline{X}-L)/\sigma$ is less than k or negative, then the lot does not meet the acceptability criterion.

¹See Appendix D for definitions of all symbols used in the sampling plans based on variability known.

²See Example D-1 for a complete example of this procedure.

D4. SUMMARY FOR OPERATION OF SAMPLING PLAN WHEN FORM 1 IS USED

The following steps summarize the procedures to be followed:

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table D-1 or D-2 by selecting the sample size n and the acceptability constant k.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic for each unit of the sample.
- (4) Compute the sample mean \overline{X} , and also compute the quantity $(U \overline{X})/\sigma$ for an upper specification limit U or the quantity $(\overline{X} L)/\sigma$ for a lower specification limit L.
- (5) If the quantity $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$ is equal to or greater than k, the lot meets the acceptability criterion; if $(U \overline{X})/\sigma$ or $(\overline{X} L)/\sigma$ is less than k or negative, then the lot does not meet the acceptability criterion.

D5. SELECTING THE SAMPLING PLAN WHEN FORM 2 IS USED

- D5.1 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability known for a single specification limit are Tables D-3 and D-4 of Part II. Table D-3 is used for normal and tightened inspection and Table D-4 for reduced inspection.
- D5.2 Obtaining the Sampling Plan. The sampling plan consists of a sample size and an associated maximum allowable percent nonconforming. The sampling plan is obtained from Master Table D-3 or D-4.
- D5.2.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter.
- D5.2.2 <u>Maximum Allowable Percent Nonconforming.</u> The maximum allowable percent nonconforming M for sample estimates corresponding to the sample size mentioned in paragraphs D5.2.1 is indicated in the column of the

master table corresponding to the applicable AQL value. Table D-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table D-4.

D6. LOT-BY-LOT ACCEPTABILITY PROCEDURES WHEN FORM 2 IS USED³

- D6.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a single specification limit shall be judged by the percent of nonconforming product outside the upper or lower specification limit. The percentage of nonconforming product is estimated by entering Table D-5 with the quality index.
- D6.2 <u>Computation of Quality Index</u>. The quality index $Q_U = (U \overline{X})v/\sigma$ shall be computed if the specification limit is an upper limit U, or $Q_L = (\overline{X} L)v/\sigma$ if it is a lower limit L. The quantities, \overline{X} and σ , are the sample mean and known variability, respectively. The factor v is provided in Tables D-3 and D-4 corresponding to the sample size.
- D6.3 Estimate of Percent Nonconforming in Lot. The quality of a lot shall be expressed by $p_{\rm U}$, the estimated percent nonconforming in the lot above the upper specification limit, or by $p_{\rm L}$, the estimated percent nonconforming below the lower specification limit. The estimated percent nonconforming $p_{\rm U}$ or $p_{\rm L}$ is obtained by entering Table D-5 with $Q_{\rm U}$ or $Q_{\rm L}$.
- D6.4 <u>Acceptability Criterion</u>. Compare the estimated lot percent nonconforming p_U or p_L with the maximum allowable percent nonconforming M. If p_U or p_L is equal to or less than M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

D7. SUMMARY OF OPERATION OF SAMPLING PLAN WHEN FORM 2 IS USED

The following steps summarize the procedures to be followed:

³See Example D-2 for a complete example of this procedure.

is nif en

- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.
- (2) Obtain plan from Master Table D-3 or D-4 by selecting the sample size n, the factor v, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
 - (4) Compute the sample mean \overline{X} .

- (5) Compute the quality index $Q_U = (U \overline{X})v/\sigma$ if an upper specification limit U is specified, or $Q_L = (\overline{X} L)v/\sigma$ if the lower specification limit L is specified.
- (6) Determine the estimated lot percent nonconforming p_U or p_L from Table D-5.
- (7) If the estimated lot percent nonconforming p_U or p_L is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p_U or p_L is greater than M or if Q_U or Q_L is negative, then the lot does not meet the acceptability criterion.

EXAMPLE D-1

Example of Calculations
Single Specification Limit—Form 1
Variability Known

Example: The specified minimum yield point for certain steel castings is 58,000 psi. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3000 psi. From Tables A-2 and D-1 it is seen that a sample of size 10 is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 68,000; 59,000; 65,500 62,000; 61,000; 69,000; 58,000; 64,500;

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
		4.0	
1	Sample Size: n	10	
2	Known Variability: σ	3,000	
3	Sum of Measurements: $\sum X$	630,000	
4	Sample Mean \overline{X} : $\sum X/n$	63,000	630,000/10
5	Specification Limit (Lower): L	58,000	
6	The Quantity: $(\overline{X} - L)/\sigma$	1.67	(63,000 - 58,000)/3,000
7	Acceptability Constant: k	1.70	See Table D-1
8	Acceptability Criterion: Compare $(\overline{X} - L)/\sigma$ with k	1.67 < 1.70	See Para. D3.3

The lot does not meet the acceptability criterion, since $(\overline{X} - L)/\sigma$ is less than k.

NOTE: If a single upper specification limit U is given, then compute the quantity $(U - \overline{X})/\sigma$ in line 6 and compare it with k; the lot meets the acceptability criterion if $(U - \overline{X})/\sigma$ is equal to or greater than k.

EXAMPLE D-2

Example of Calculations Single Specification Limit—Form 2 Variability Known

Example: The specified minimum yield point for certain steel castings is 58,000 psi. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3000 psi. From Tables A-2 and D-3 it is seen that a sample of size 10 is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 68,000; 59,000; 65,500; 62,000; 61,000; 69,000; 58,000; 64,500;

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	10	
2	Known Variability: σ	3,000	
3	Sum of Measurements: $\sum X$	630,000	
4	Sample Mean \overline{X} : $\sum X/n$	63,000	630,000/10
5	Factor: v	1.054	See Table D-3
6	Specification Limit (Lower): L	58,000	
7	Quality Index: $Q_L = (\overline{X} - L)v/\sigma$	1.76	(63,000 - 58,000)1.054/3,000
8	Est. of Lot Percent Ncf.: p _L	3.92%	See Table D-5
9	Max. Allowable Percent Ncf.: M	3.63%	See Table D-3
10	Acceptability Criterion: Compare p_L with M	3.92% > 3.63%	See Para. D6.4

The lot does not meet the acceptability criterion, since p_L is greater than M.

NOTE: If a single upper specification limit U is given, then compute the quality index $Q_U = (U - \overline{X})v/\sigma$ in line 7 and obtain the estimate of the percent nonconforming p_U . Compare p_U with M; the lot meets the acceptability criterion if p_U is equal to or less than M.

Master Table for Normal and Tightened Inspection for Plans Based on Variability Known (Single Specification Limit—Form 1) Table D-1

Sample			Ά¢	Acceptance Quality Limits (normal inspection)	e Quali	ty Limi	ts (norr	nal insp	ection)			
Size Code		<u></u>		10	-:	51.	1 2	25	4.	40	~	65
Letter	¤	-74	¤	72	п	×	u	شد کش	¤	.×	n	بعدر
æ										00000000		
O				0000000				588888888		20000000		
Ω				0000000			waste.	&.	100		Ø	1.58
ľπj		*********		000000	- Ber		сi	1.94	7	1,81	ćΩ	697
ĺΨ	,			×	m	2.19	m	2.07	ы	1.91	4	08.1
Ö	٠٠.	2.49	4	2.39	4	2.30	4	2.14	s.	2.05	5	1.88
DI.	4	2.55	16)	2.46	v)	2.34	9	2.23	9	2.08	ţ~-	1.95
jwwi	Ŷ	2.59	\$	2.49	9	2.37	~	2.25	00	2.13	∞	96:1
۳,	7	2.63	×	2.54	9	2.45	9	2.29	10	2.16	11	2.01
×	Ξ	2.72	Ξ	2.59	12	2.49	13	2.35	14	2.21	16	2.07
 -ì	15	2.77	16	2.65	17	2.54	6	2.41	21	2.27	23	2.12
M	30	2.80	22	2.69	23	2.57	25	2.43	27	2.29	30	2.14
Z	30	2.84	31	2.72	34	2.62	37	2.47	40	2.33	44	2.17
d	94	2.85	42	2.73	2 1 5	2.62	49	2.48	55	2.34	59	2.18
	A.m.i	10	1	51.	Ci.	25	4.	40	vo.	65	,i	8.
			Acc	Acceptance Quality Limits (tightened inspection)	Qualit	y Limits	; (tighte	med ins	section			
		*************	***************************************	**********	**********	**************	-	***************************************	*************	*************	********	hammana

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Master Table for Normal and Tightened Inspection for Plans Based on Variability Known (Single Specification Limit—Form 1) Table D-1—Continued

Sample			Ac	ceptanc	e Quali	ity Limi	ts (norr	Acceptance Quality Limits (normal inspection)	ection)			
Size Code	,;	1.00	+==1	1.50	2	2.50	4	4.00	6.50	50	01	10.00
Letter	¤	.22	Ħ	كطنه	п	.×	ű	ᄶ	ជ	,⊻	ដ	,±4
В	-90-		380						ooggen		- ge-	
C	сì	1.36	cı	1.25	2	1.09	7	936	3	.755	æ	.573
α	63	1.42	2	1.33	3	1.17	3	1.0.1	LL)	828.	4	.641
ъij	33	1.56	(¹⁹)	4	বা	1.28	4		w	616	40	.728
æ	4	1.69	4	1.53	S.	1.39	S.	1.20	9	166.	۲-	797.
Ð	9	1.78	မှ	1.62	7	1.45	ಜ	1.28	9	1.07	11	778.
E	7	1.80	∞	1.68	o\	1.49	20	5	2		4	906.
provi	6	1.83	10	1.70	y(1.51	13	1.34	, (2)	1.13	<u>/1</u>	.924
) (12	1.88	14	1.75	15	1.56	18	1.38	20	1.17	24	964
K	17	1.93	19	1.79	22	1.61	25	1.42	29	1.21	33	566
<u>-</u>	25	1.97	28	1.84	32	1.65	36	1.46	42	1.24	94	1.03
M	33	2.00	36	1.86	42	1.67	48	1.48	55	1.26	64	1.05
z	49	2.03	54	1.89	61	1.69	7.0	1.51	23	1.29	95	1.07
4	65	2.04	71	1.89	81	1.70	93	1.51	60	1.29	127	1.07
***************************************	,	1.50	2	2.50	4	4.00	9".	6.50	10.00	8		
		AC	ceptanc	e Qualii	ty Limi	ts (tight	ened in	Acceptance Quality Limits (tightened inspection)	1)			

Master Table for Reduced Inspection for Plans Based on Variability Known (Single Specification Limit—Form 1) Table D-2

Sample				Accep	tance (Acceptance Quality Limits	irmits			
Size	—į	.10		.13	c,i	25	4.	40	Ψ.	.65
Letter	ដ	1 24	u	-74	а	샏	น	-74	ជ	74
В		******				00000000				00000000
C		*******				0000000				00000000
D										
ш						0000000		10000000		
لتا						00000000			લ	1.36
G			88.		er 800		7	1.58	7	1.42
H		8	6	1.94	2	1.81	m	1.69	۲۲)	1.56
hand	£	2.19	ĸ	2.07	'n	1.93	4	1.80	4	1.69
~-,	4	2.30	4	2.14	κ	2.05	S	1.88	9	1.78
K	S	2.34	9	2.23	Q	2.08	۲.	1.95	7	1.80
<u>سا</u>	9	2.37	7	2.25	œ	2.13	∞ 	1.96	σħ	1.83
M	7	2.38	8	2.26	6	2.13	01	1.99	11	1.86
Z	12	2.49	13	2.35	4	2.21	16	2.07	17	1.93
d,	13	2.54	61	2.41	21	2.27	23	2.12	25	1.97

Master Table for Reduced Inspection for Plans Based on Variability Known (Single Specification Limit—Form 1) Table D-2—Continued

			F	Accep	Acceptance Quality Limits	nality)	Limits				
1.00	7 :		1.50	2	2.50	₹Ť	4.0	9	6.5	10	10.00
k n	u		,54	Ħ	أمخر	¤	أعظر	ц	781	น	-54
**********	200000000	····			************				000000000		
	2222222				0000000				0000000		
200000000	2000000000				888888888				22222222		000000000
	ngjjib			gga-				304-			
1.25 2 1		,	60.1	CI.	.936	æ	.755	ĸ	.573	4	.344
1.33 3 1			77	w	1.01	स्ट	.825	4	.641	4	.429
1.44 4		***1	.28	4	,i	S	616	G)	.728	မှ	.515
1.53 5 1		1	1.39	w	1.20	9	166.	۲.	797	∞	.584
1.62 7		,	1.45	∞	1.28	6	1.07	==	.877	<u></u>	649
1.68 9	<u>o</u> ,		64.1	10	13.	12	=======================================	7	906	2	589.
1.70 111			1.51	13	1.34	5	1.13	17	.924	20	.706
1.72 13 3			1.53	15	1.35	38	1.15	21	.942	21	.719
1.79 22	22		197	25	1.42	56	1771	33	566	38	077.
1.84 3.2			1.65	36	1.46	42	1.24	49	1.03	56	.803

PART II DOUBLE SPECIFICATION LIMIT

D8. SAMPLING PLAN FOR DOUBLE SPECIFICATION LIMIT

This part of the standard describes the procedures for use with plans for a double specification limit when variability of the lot with respect to the quality characteristic is known.

- D8.1 <u>Use of Sampling Plans</u>. To determine whether the lot meets the acceptability criterion with respect to a particular quality characteristic and AQL value(s), the applicable sampling plan shall be used in accordance with the provisions of Section A, General Description of Sampling Plans, and those in this part of the standard.
- D8.2 Initial Review for Combined Double Specification Limits. Before implementing a sampling plan for combined double specification limits when the process variability is known, it is mandatory to carry out a check that the process standard deviation, σ , does not exceed the Maximum Process Standard Deviation (MPSD) derived from Table D-6 that corresponds to the specified AQL. If σ is greater than the MPSD, the process average is known to be excessive, and lots shall be judged not acceptable without samples being drawn. If σ does not exceed the MPSD, it is an indication that the process average may be acceptable, and sampling inspection should be carried out in order to determine lot acceptability. To make the comparison, the following procedure is recommended:
- (1) Determine the standardized MPSD from Table D-6 for the given AQL.
- (2) Multiply the standardized MPSD by the specification interval U L to obtain the MPSD.
- (3) Compare the process standard deviation, σ , with this calculated MPSD.

D9. SELECTING THE SAMPLING PLAN

A sampling plan for each AQL value shall be selected from Table D-3 or D-4 as follows:

D9.1 <u>Determination of Sample Size Code Letter</u>. The sample size code letter shall be selected from Table A-2 in accordance with paragraph A7.1.

- D9.2 <u>Master Sampling Tables</u>. The master sampling tables for plans based on variability known for a double specification limit are Tables D-3 and D-4. Table D-3 is used for normal and tightened inspection and Table D-4 for reduced inspection.
- D9.3 <u>Obtaining Sampling Plan</u>. A sampling plan consists of a sample size and the associated maximum allowable percent nonconforming. The sampling plan to be applied in inspection shall be obtained from Master Table D-3 or D-4.
- D9.3.1 <u>Sample Size</u>. The sample size n is shown in the master table corresponding to each sample size code letter and AQL.
- D9.3.2 Maximum Allowable Percent Nonconforming. The maximum allowable percent nonconforming for sample estimates of percent nonconforming for the lower, upper, or both specification limits combined, corresponding to the sample size mentioned in paragraph D9.3.1, is shown in the column of the master table corresponding to the applicable AQL value(s). If different AQLs are assigned to each specification limit, designate the maximum allowable percent nonconforming by $M_{\rm L}$ for the lower limit, and by $M_{\rm U}$ for the upper limit. If one AQL is assigned to both limits combined, designate the maximum allowable percent nonconforming by M. Table D-3 is entered from the top for normal inspection and from the bottom for tightened inspection. Sampling plans for reduced inspection are provided in Table D-4.

D10. DRAWING OF SAMPLES

Samples shall be selected in accordance with paragraph A7.2.

D11. LOT-BY-LOT ACCEPTABILITY PROCEDURES

D11.1 <u>Acceptability Criterion</u>. The degree of conformance of a quality characteristic with respect to a double specification limit shall be judged by the percent of nonconforming product. The percentage of nonconforming product is estimated by entering Table D-5 with the quality index.

D11.2 Computation of Quality Indices. The quality indices $Q_U = (U - \overline{X})v/\sigma$ and $Q_L = (\overline{X} - L)v/\sigma$ shall be computed, where

U is the upper specification limit, L is the lower specification limit, v is a factor provided in Tables D-3 and D-4, \overline{X} is the sample mean, and σ is the known variability.

D11.3 Percent Nonconforming in the Lot. The quality of a lot shall be expressed in terms of the lot percent nonconforming. Its estimate will be designated by p_L , p_U , or p. The estimate p_U indicates conformance with respect to the upper specification limit, p_L with respect to the lower specification limit, and p for both specification limits combined. The estimates p_L and p_U shall be determined by entering Table D-5, respectively with Q_L and Q_U . The estimate p shall be determined by adding the corresponding estimated percents nonconforming p_L and p_U found in the table.

D12. ACCEPTABILITY CRITERION AND SUMMARY FOR OPERATION OF SAMPLING PLANS

- D12.1 One AQL Value for Both Upper and Lower Specification Limit Combined.
- D12.1.1 Acceptability Criterion. Compare the estimated lot percent nonconforming $p = p_U + p_L$ with the maximum allowable percent nonconforming M. If p is equal to or less than M, the lot meets the acceptability criterion; if p is greater than M or if Q_U or Q_L , or both are negative, then the lot does not meet the acceptability criterion.
- D12.1.2 <u>Summary of Operation of Sampling Plan</u>. In cases where a single AQL value is established for the upper and lower specification limit combined for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot size and the inspection level.

- (2) Select plan from Master Table D-3 or D-4. Obtain the sample size n, the factor v, and the maximum allowable percent nonconforming M.
- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit of the sample.
 - (4) Compute the sample mean \overline{X} .
- (5) Compute the quality indices $Q_U = (U \overline{X})v/\sigma$ and $Q_L = (\overline{X} L)v/\sigma$.
- (6) Determine the estimated lot percent nonconforming $p = p_U + p_L$ from Table D-5.
- (7) If the estimated lot percent nonconforming p is equal to or less than the maximum allowable percent nonconforming M, the lot meets the acceptability criterion; if p is greater than M or if Q_U or Q_L or both are negative, then the lot does not meet the acceptability criterion.
- D12.2 <u>Different AQL Values for Upper and Lower Specification Limit.</u>
- D12.2.1 Acceptability Criteria. ⁵ Compare the estimated lot percents nonconforming p_L and p_U with the corresponding maximum allowable percents nonconforming M_L and M_U : also compare $p = p_L + p_U$ with the larger of M_L and M_U . If p_L is equal to or less than M_L , p_U is equal to or less than M_U , and p is equal to or less than the larger of M_L and M_U , the lot meets the acceptability criteria; otherwise, the lot does not meet the acceptability criteria. If either Q_L or Q_U or both are negative, then the lot does not meet the acceptability criteria.
- D12.2.2 <u>Summary for Operation of Sampling Plan</u>. In cases where a different AQL value is established for the upper and lower specification limit for a single quality characteristic, the following steps summarize the procedures to be used:
- (1) Determine the sample size code letter from Table A-2 by using the lot sizes and inspection level.
- (2) Select the sampling plan from Master Table D-3 or D-4. Obtain the sample size n and the factor v, corresponding

⁴See Example D-3A for a complete example of this procedure.

⁵See Example D-4A for a complete example of this procedure.

to the larger of the two AQL values, and also the maximum allowable percent nonconforming $M_{\rm U}$ and $M_{\rm L}$, corresponding to the AQL values for the upper and lower specification limits, respectively.

- (3) Select at random the sample of n units from the lot; inspect and record the measurement of the quality characteristic on each unit in the sample.
- (4) Compute the sample mean \overline{X} .
- (5) Compute the quality indices $Q_U = (U \overline{X})v/\sigma$ and $Q_L = (\overline{X} L)v/\sigma$.
- (6) Determine the estimated lot percents nonconforming p_U and p_L , corresponding to the percents nonconforming

above the upper and below the lower specification limits. Also determine the combined percent nonconforming $p = p_{II} + p_{I}$.

- (7) If all three of the following conditions:
 - (a) $p_{\scriptscriptstyle U}$ is equal to or less than $M_{\scriptscriptstyle U},$
 - (b) p_L is equal to or less than M_L ,
 - (c) p is equal to or less than the larger of M_L and M_U ,

are satisfied, the lot meets the acceptability criteria; otherwise the lot does not meet the acceptability criteria. If either $Q_{\rm L}$ or $Q_{\rm U}$ or both are negative, then the lot does not meet the acceptability criteria.

EXAMPLE D-3A

Example of Calculations

Double Specification Limit

Variability Known

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The specified maximum and minimum yield points for certain steel castings are 67,000 and 58,000 psi, respectively. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3,000 psi.

Line	Information Needed	Value Obtained	Explanation
1	Upper Specification Limit: U	67,000	
2	Lower Specification Limit: L	58,000	
3	Known Variability: σ	3,000	
4	Factor for Maximum Process Standard Deviation for an AQL of 1.5%: $F \sigma$	0.194	See Table D-6
5	Maximum Process Standard Deviation: $MPSD = F \sigma (U - L)$	1,746	0.194 (67,000 – 58,000)
6	Mandatory check: Compare σ with MPSD	3,000 < 1,746	

The process fails the mandatory check that σ does not exceed the MPSD, so sampling inspection is pointless and submitted lots should not be accepted.

EXAMPLE D-3B

Example of Calculations

Double Specification Limit

Variability Known

One AQL Value for Both Upper and Lower Specification Limit Combined

Example: The specified maximum and minimum yield points for certain steel castings are 70,000 and 54,000 psi, respectively. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection, with AQL = 1.5% is to be used. The variability σ is known to be 3,000 psi.

Line	Information Needed	Value Obtained	Explanation
1	Upper Specification Limit: U	70.000	
2	Lower Specification Limit: L	54,000	
3	Known Variability: σ	3,000	
4	Factor for Maximum Process Standard Deviation for an AQL of 1.5%: $F \sigma$	0.194	See Table D-6
5	Maximum Process Standard Deviation: MPSD = $F \sigma (U - L)$	3,104	0.194 (70,000 – 54,000)
6	Mandatory check: Compare σ with MPSD	3,000 < 3,104	

The process satisfies the mandatory check that σ does not exceed the MPSD. It follows that there is a possibility, though not a certainty, that the lot is acceptable. Lot acceptability is determined by sampling. From Tables A-2 and D-3, it is seen that a sample of size 10 is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 68,000; 59,000; 65,500; 62,000; 61,000; 69,000; 58,000; 64,500;

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
7	Sample size: n	10	See Tables A-2 and D-3
8	Sum of Measurements: $\sum X$	630,000	
9	Sample Mean: $\overline{X} = \sum X/n$	63,000	630,000/10
10	Factor: v	1.054	See Table D-3
11	Quality Index: $Q_U = (U - \overline{X})v/\sigma$	2.46	(70,000 - 63,000) 1.054/3,000
12	Quality Index: $Q_L = (\overline{X} - L)v/\sigma$	3.16%	$(63,000 - 54,000) \ 1.054/3,000$
13	Est. of Lot % Ncf. Above U: p _U	0.70%	See Table D-5
14	Est. of Lot % Ncf. Below L: p _L	0.08%	See Table D-5
15	Total Est. % Ncf. in Lot: $p = p_U + p_L$	0.78%	0.697% + 0.078%
16	Max. Allowable Est. % Ncf.: M	3.63%	See Table D-3
17	Acceptability Criterion: Compare p with M	0.78% < 3.63%	

The lot meets the acceptability criterion, since $p = p_U + p_L$ is less than M.

EXAMPLE D-4

Example of Calculations Double Specification Limit Variability Known

Different AQL Values for Upper and Lower Specification Limits

Example: The specified maximum and minimum yield points for certain steel castings are 67,000 psi and 58,000 psi, respectively. A lot of 500 items is submitted for inspection. Inspection Level II, normal inspection with AQL = 1% for the upper and AQL = 2.5% for the lower specification limit is to be used. The variability σ is known to be 3,000 psi. From Tables A-2 and D-3 it is seen that a sample of size 11 corresponding to the sample size code letter, I, and the AQL value of 2.5% is required. Suppose the yield points of the sample specimens are:

62,500; 60,500; 64,000; 59,000' 65,500; 62,000; 61,000; 60,500; 68,000; 62,000; 63,000

and compliance with the acceptability criterion is to be determined.

Line	Information Needed	Value Obtained	Explanation
1	Sample Size: n	11	
2	Known Variability: σ	3,000	
3	Sum of Measurements: $\sum X$	688,000	
4	Sample Mean \overline{X} : $\sum X/n$	62,645	688,000/11
5	Factor: v	1.049	See Table D-3; use larger AQL
6	Upper Specification Limit: U	67,000	
7	Lower Specification Limit: L	58,000	
8	Quality Index: $Q_U = (U - \overline{X})v/\sigma$	1.56	(67,000 - 62,645)1.049/3,000
9	Quality Index: $Q_L = (\overline{X} - L)v/\sigma$	1.59	(62,545 - 58,000)1.049/3,000
10	Est. of Lot Percent Ncf. above U: p _U	5.94%	See Table D-5
11	Est. of Lot Percent Ncf. below L: p _L	5.59%	See Table D-5
12	Total Est. Percent Ncf. in Lot: $p = p_U + p_L$	11.53%	5.94% + 5.59%
13	Max. Allowable Percent Ncf. Above U: $M_{\rm U}$	2.59%	See Table D-3
14	Max. Allowable Percent Ncf. Below L: M_L	5.60%	See Table D-3
15	Acceptability Criteria: (a) Compare p_U with M_U	5.94% > 2.59%	See Para. D12.2.2(7)(a)
	(b) Compare p_L with M_L	5.59% > 5.60%	See Para. D12.2.2(7)(b)
	(c) Compare p with M_L	11.53% > 5.60%	See Para. D12.2.2(7)(c)

The lot does not meet the acceptability criteria, since 15(a), (b), and (c) are not satisfied; i.e., $p_U > M_U$, $p_L > M_L$, and $p > M_L$.

Master Table for Normal and Tightened Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-3

Sample						Acce	ytanc	e Qua	Acceptance Quality Limits (normal inspection)	níts (norma	l inspe	ctior	÷				
Size Code		Ęщ			91.	(:-: :5			25			.40			39.	
Letter	E	×	>	¤	Z	'n	ß	Σ	>	ដ	Z	Δ	Ę	×	Α	¤	Z	>
æ		000000000			00000000						888888888			000000000			200000000	
C		88888888			20000000			*********			8888888			8888888			***	******
Q		200820000			20000000			0000000			m)			ooglike-		2	1.28	1.414
埘		8888888			00000000					~	310	1,414	64	.510	<u> </u>	4	1.94	1.225
ĹΔ.,		so de			w Mar		(f)	369	1.225	ŧŋ	.568	1.225	'n	959	1.225	4	1.88	1.155
Ð	٧٠,	114	1.225	य	.290	1.155	4	399	1.155	4	189.	1.155	Ç.	1.09	1.118	' 0	1.76	1.118
177	4	191	1.155	80	296	1.118	V)	.445	1.118	Ó	.721	1.095	æ	4	1.095	١,	1.75	1.080
}== 4	9	.230	1.095	9	.321	1.095	٥	.478	1.095	<u></u>	.756	1.080	00	<u>*:</u>	1.069	∞	1.80	1.069
£	7	.226	1.080	∞	.330	1.069	6	6917	1.061	6	760	1.061	10	1.14	1.054	11	1.73	1.049
Ж	11	217	1.049	Ξ	.326	1.049	1.2	.461	1.045	13	.721	1.041	4	1.08	1.038	16	1,62	1.033
m	15	23.1	1.035	91	308	1.033	2	.438	1.031	63	.673	1.027	23	2.00	1.025	23	1.51	1.023
M	50	.207	1.026	22	.296	1.024	23	.423	1.023	25	559.	1.021	27	086	1.019	30	1.47	1.017
72.	30	.193	1.017	33	.283	1.017	£.	397	1.015	37	.615	1.014	.	.921	1.013	4	1.39	1,012
а	40	961.	1.013	42	.285	1.012	54	.402	1.011	6	.620	1.010	54	.920	1.009	59	1.39	1.009
		.10	_		.15	16	~~~~	25			740			.65			1.00	0
						Accept	ance	Quali	Acceptance Quality Limits (tightened inspection)	its (t	ighten	ed insp	ectic	m)				
			***************************************		***************************************		***************************************	***************************************	***************************************						***************************************		***************************************	

All AQL values are in percent nonconforming. T denotes plan used exclusively on tightened inspection and provides symbol for identification of appropriate OC curve.

Master Table for Normal and Tightened Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-3—Continued

Sample		-	-			Accep	tanc	e Qual	Acceptance Quality Limits (normal inspection)	nits (normal	inspec	tion)					
Size		9.1			1.50			2.50	_		4.00			6.50	_		10.00	
Letter	n	×	Α	=	M	^	ü	M	>	Ħ	M	ý	п	M	Λ	a	M	>
B					and the			800)			mgh-			soogle-			maghts	
U	2	2.73	414	~	3.90	1.414	(7	6.11	1,414	C1	9.27	1.414	.3	17.74	1.225	3	24.22	1.225
D	C.3	2.23	1.414	2	3.00	1,414	ω,	7.56	1,225	3	10.79	1.225	٣,	15.60	1.225	4.	22.97	1.155
m	т.	2.76	1.225	67	3.85	1.225	4	66.9	1.155	4	9.97	1.155	40	15.21	1.118	ν.	20.80	25
[24	4	2.58	1.155	4	3.87	1.155	v)	6.05	1.118	ψ'n.	8.92	1.118	9	13.89	1.095	7	19.46	1.080
Ð	9	2.57	1.095	9	3.77	1.095	7	5.83	1.080	00	8.62	1.069	o,	12.88	1.061	(mm)	17.88	1.049
II	7	2.62	1.080	~	3.68	1.069	0	5,68	1.061	2	8.43	1.054	12	12.35	1.045	4	17.36	1.038
	φ.	2.59	1.061	2	3.63	1.054	(==1 (==1	5.60	0.149	2	8.13	1.041	15	12.04	1.035	1.7	17.05	1.031
, ,	12	2.49	1.045	4	3,43	1.038	55	5.34	1.035	33	7.72	67071	30	11.57	1.026	2,4	16.23	1.022
K	17	2.35	1.031	61	3.28	1.027	22	4.98	1.024	25	7.34	1.021	29	10.93	1.018	33	15.61	1.016
<u>,)</u>	25	2.19	1.021	82	3.05	1.018	32	4.68	1.016	36	6.95	1.014	4	10.40	1.012	64	14.87	1.010
X	33	2.12	1.016	36	2.99	1.014	5	4.55	1.012	48	6.75	1.011	55	10.17	1.009	0.4	14.58	1.008
z	49	2.00	1.010	54	2.82	1.009	61	4.35	1.008	73	6.48	1.007	82	9.76	1.006	95	14.09	1.005
Ω.	65	2.00	1.008	7	2.82	1.007	<u>55</u>	4.34	1.006	93	6.46	1.005	601	9.73	1.005	127	127 14.02	1.004
		1.50	0		2.50	0		4.00	0		6.50	_		10.00	30			
						Accept	tance	- Quali	Acceptance Quality Limits (tightened inspection)	its (t	ightene	dsui þe	ection	~				
		-	***************************************	-	***************************************	***************************************	*********	***************************************	***************************************		***************************************	***************************************	***************************************	***************************************	*************	RAMARANA	***************************************	Sanarananana

Master Table for Reduced Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-4

Sample						Acce	ptan	псе Оп	Acceptance Quality Limits	mits					
Size Code		01.			3.15			.25			.40			99	
Letter	u	M	Λ	u	M	Λ	u	M	Α	u	M	Λ	П	M	Λ
m 0		300000000000000000000000000000000000000			***************************************			988888888888888888888888888888888888888			388888888888888888888888888888888888888			900000000000000000000000000000000000000	
a		000000000						***********			000000000000000000000000000000000000000			***********	
II.)		20000000			********			9888888			88888888				
Щ		100000000			**********			8888888			ngjja-		2	2.73	1,414
Ð		99999999			angles			oogbe		2	1.28	1.414	2	2.23	1.414
II		*		2	310	1.414	7	.510	1.414	150	1.94	1,225	44)	2.76	1.225
jane)	62	369	1.225	ćΩ	.568	1.225	ťΩ	959	1.225	য	1.88	1.155	덕*	2.58	1.155
رسر	4	399	1.155	47	.681	1.155	ν.	1.09	1.118	'n	1.76	1.118	Q	2.57	1.095
М	K)	.445	1.118	9	.721	1.095	Ģ	1.14	1.095	۲-	1.75	1.080	۲-	2.62	1.080
<u>,</u>	٥	.478	1.095	~	.756	1.080	೧೮	1.14	1.069	œ	1.80	1.069	9	2.59	1.061
M	ŗ,	.507	1.080	છ	167.	1.069	6	1.18	1.061	10	1.79	1.054	1; 1;	2.57	1.049
Z	12	.461	1.045	£1	.721	1.041	14	1.08	1.038	16	797	1.033	17	2.35	1.031
ů.	17	.438	1.031	9	.673	1.027	2.1	1.00	1.025	23	1.51	1.023	25	2.19	1.021

Master Table for Reduced Inspection for Plans Based on Known Variability (Double Specification Limit and Form 2—Single Specification Limit) Table D-4—Continued

Nat Nat	Sample								Accep	Acceptance Quality Limits	Juali	ty Line	its						
Nat Nat	Size Code		ő.	0		1.5			2.5(0		4.00	_		6.5(10.0	٥
2 3.90 1.414 2 9.27 1.414 3 1.774 1.225 3 2.422 1.235 4 33.67 2 3.90 1.414 2 9.27 1.414 3 1.774 1.225 3 2.422 1.235 4 33.67 3 3.80 1.414 2 9.27 1.414 3 1.774 1.225 3 2.422 1.225 4 33.67 4 3.85 1.225 4 9.97 1.155 5 1.255 1 1.056 1.158 5 2.080 1.118 5 2.080 1.118 5 2.080 1.118 5 2.080 1.118 5 2.080 1.118 5 8.25 1.118 6 1.380 1 9 1.059 1 1.18 5 1.099 1 1.18 6 1.280 1 1 1.099 1 1.099 1 1.099 1 1.099 <td>Letter</td> <td>ဌ</td> <td>M</td> <td>Α</td> <td>п</td> <td>M</td> <td>></td> <td>Ħ</td> <td>M</td> <td>۵</td> <td>a</td> <td>X</td> <td>Λ</td> <td>ជ</td> <td>Z</td> <td>Λ</td> <td>ဌ</td> <td>M</td> <td>Α</td>	Letter	ဌ	M	Α	п	M	>	Ħ	M	۵	a	X	Λ	ជ	Z	Λ	ဌ	M	Α
2 3.90 1.414 2 9.27 1.414 3 1.774 1.225 3 24.22 1.235 4 33.67 2 3.90 1.414 2 6.11 1.414 2 9.27 1.414 3 1.774 1.225 3 24.22 1.215 4 33.67 2 3.00 1.414 3 7.56 1.255 3 10.79 1.255 3 1.50 1.255 4 2.97 1.118 5 20.80 1.118 6 28.64 4 3.87 1.155 5 6.05 1.118 5 8.29 1.118 6 13.89 1.095 7 19.46 1.080 8 26.44 1.080 8 8.62 1.059 7 19.46 1.080 8 2.049 1.018 1.038 1.061 1.060 9 1.238 1.061 1.018 8 1.021 1.039 1.044 1.041 1.044 1.	В		200000000			88888888			200000000			8000000000			80000000			0000000	
2 3.00 1.414 2 9.27 1.414 3 1.726 3.297 1.135 4 2.297 1.414 3 1.726 3 2.422 1.225 4 33.67 2 3.00 1.414 3 7.56 1.225 3 10.79 1.225 3 15.60 1.225 4 22.97 1.118 5 15.60 1.118 5 20.80 1.118 6 28.64 4 3.85 1.225 4 9.97 1.158 5 15.20 1.118 5 20.80 1.118 6 28.64 1.118 6 18.89 1.018 6 13.89 1.098 7 1.118 6 13.89 1.098 7 1.049 1 1.059 1.058 1.018 8 8.62 1.069 9 1.288 1.061 1.118 8 1.029 1.049 1.058 1.089 1.089 1.089 1.089 1.089 1.089	O		88888888			88888888			XXXXXXXXX			88888888			88888888			00000000	
4 4 4 4 4 4 4 4 4 4 5 1414 2 9.27 1414 3 17.74 1.225 3 24.22 1.225 4 33.67 2 3.00 1.414 3 7.56 1.225 3 10.79 1.225 3 15.00 1.225 4 22.97 1.118 5 20.80 1.118 6 33.67 4 3.85 1.225 4 9.97 1.155 5 15.21 1.118 5 20.80 1.118 6 28.64 4 3.87 1.125 4 9.97 1.155 5 15.21 1.118 5 20.80 1.118 6 28.64 6 3.77 1.095 7 5.83 1.080 8 8.22 1.118 6 12.88 1.091 1.118 6 18.89 1.095 7 19.49 1.094 1.080 8 <td< td=""><td>D</td><td></td><td>00000000</td><td></td><td></td><td>***********</td><td></td><td></td><td>00000000</td><td></td><td></td><td>00000000</td><td></td><td></td><td>88888888</td><td></td><td></td><td></td><td></td></td<>	D		00000000			***********			00000000			00000000			88888888				
2 3.00 1.414 2 6.11 1.414 2 9.27 1.414 3 1.414 3 7.56 1.225 3 1.726 3 1.225 4 2.237 1.135 4 3.367 3 3.85 1.225 4 6.97 1.155 5 1.155 5 1.155 5 1.155 6 1.155 6 1.155 6 1.155 6 1.155 6 1.155 6 1.155 7 1.168 6 1.286 1.095 7 1.186 6 1.188 6 1.289 1.095 7 1.186 6 1.188 6 1.288 1.095 7 1.186 6 1.288 1.096 7 1.188 6 1.288 1.096 7 1.188 7 1.049 1.0 1.059 9 1.288 1.061 1.188 1.059 1.0 1.059 1.0 1.089 8 8.02 1.059 <td< td=""><td>斑</td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td></td<>	斑		*			*			*						*			*	
2 3.00 1.414 3 7.56 1.225 3 10.79 1.225 5 1.56 1.225 4 9.97 1.125 5 1.520 4 2.297 1.155 5 1.521 1.118 5 20.80 1.118 6 28.64 4 3.87 1.125 5 6.05 1.118 5 8.92 1.118 6 13.89 1.095 7 1.080 8 26.64 8 3.37 1.095 7 5.83 1.069 9 5.82 1.069 9 1.080 8 26.08 1.095 1 1.080 8 26.08 1.061 1 1.080 9 1.080 8 8.62 1.069 9 1.080 8 1.060 1 1.080 1 1.080 1 1.080 1 1.080 1 1.080 1 1.080 1 1.080 1 1.080 1 1.080 1 1.080 <td>ĹI⊣</td> <td>2</td> <td>3.90</td> <td>1.414</td> <td>7</td> <td>6.11</td> <td>1.414</td> <td>2</td> <td>9.27</td> <td>1.414</td> <td>67,</td> <td>17.74</td> <td>1.225</td> <td>۲,</td> <td>24.22</td> <td>1.225</td> <td>4</td> <td>33.67</td> <td>1.225</td>	Ĺ I ⊣	2	3.90	1.414	7	6.11	1.414	2	9.27	1.414	67,	17.74	1.225	۲,	24.22	1.225	4	33.67	1.225
3 3.8.5 1.255 4 6.99 1.155 5 1.155 6 1.155 6 1.155 6 1.118 6 1.359 1.118 6 1.155 7 1.046 1.118 7 1.118 7 1.118 7 1.118 7 1.118 7 1.118	G	7	3.00	1,414	47	7.56	1.225	m,	10.79		'n	15.60	1.225	4	22.97	1.155	4	31.01	1.155
4 3.87 1.155 5 6.05 1.118 5 8.92 1.118 6 13.89 1.095 7 19.46 1.080 8 26.64 8 3.68 1.080 8 8.62 1.069 9 1.288 1.061 11 17.88 1.049 12 24.88 10 3.63 1.054 11 5.60 1.049 13 8.13 1.054 12 12.35 1.045 14 17.36 1.038 16 23.96 10 3.63 1.054 11 5.60 1.049 13 8.13 1.041 15 12.04 1.035 17 17.05 1.031 20 23.43 12 3.61 1.045 13 8.13 1.021 29 10.93 1.018 3 1.016 38 21.77 18 3.28 1.024 25 7.34 1.021 29 1.018 33 1.016 38 21.77	H	ξΩ.	3.85	1.225	4	66.9	1.155	শ	9.97	1.155	ζ.	15.21	8	'n	20.80	1.118	ဖ	28.64	1.095
6 3.77 1.095 7 5.83 1.080 8 6.20 1.069 9 12.88 1.061 11 17.88 1.049 12 24.88 1.061 11 17.05 1.075 10.49 12 1.054 12 12.35 1.045 14 17.36 1.038 16 23.96 16 23.94 16 23.05 1.041 15 12.04 15 12.04 1.035 17 17.05 10.31 20 23.43 1 12 3.61 1.045 13 5.68 1.041 15 8.13 1.035 18 1.029 21 17.05 10.31 20 23.43 19 3.28 1.027 22 4.98 1.024 25 7.34 1.021 29 10.93 1.018 33 15.61 1.016 38 21.77 1 28 3.05 1.018 32 4.68 1.016 36 1.014 42	jewe)	4	3.87	1.155	Α.)	6.05	1.118	κ	8.92	1.138	9	13.89	1.095	ŗ.	19.46	1.080	×	26.64	1.069
8 3.68 1.069 9 5.68 1.061 10 8.43 1.054 12 12.35 1.045 14 17.36 1.035 14 17.36 1.038 16 23.96 10 3.63 1.054 11 5.60 1.049 13 8.13 1.041 15 12.04 1.035 17 17.05 1.031 20 23.43 12 3.61 1.045 13 5.58 1.041 15 8.13 1.035 18 11.88 1.029 21 16.71 1.025 24 23.13 1 19 3.28 1.027 22 4.98 1.024 25 7.34 1.021 29 10.93 1.018 33 15.61 1.016 38 21.77 1 28 3.05 1.018 32 4.68 1.016 36 6.95 1.014 42 10.10 49 14.87 1.010 56 20.90	 .	છ	3.77	1.095	7	5.83	1.080	ಯ	8.62	1.069	a.	12.88	1.06.1	=	17.88	1.049	엺	24.88	1.045
10 3.63 1.045 11 8.13 1.041 15 1.041 15 1.041 15 1.041 15 1.041 15 1.041 15 1.045 18 1.035 18 11.88 1.029 21 16.71 1.025 24 23.13 1 19 3.28 1.027 22 4.98 1.024 25 7.34 1.021 29 10.93 1.018 33 15.61 1.016 38 21.77 1 28 3.05 1.018 32 4.68 1.016 36 6.95 1.014 42 1.012 49 1.012 49 1.012 36 20.90 1	Ж	∞	3.68	1.069	ο,	5.68	1.061	10	8.43	1.054	ဌ	12.35	1.045	7	17.36	1.038	91	23.96	1.033
12 3.61 1.045 1.3 5.58 1.035 1.8 1.035 1.8 1.029 2. 1.6.71 1.025 24 23.13 19 3.28 1.027 2. 4.98 1.024 25 7.34 1.021 29 10.93 1.018 33 15.61 1.016 38 21.77 28 3.05 1.018 3.5 4.68 1.016 36 6.95 1.014 42 10.40 1.012 49 14.87 1.010 56 20.90	<u>,)</u>	<u></u>	3.63	1.054		5.60	1.049	<u>;;;</u>	8.13	1.041	2 5	12.04	1.035		17.05	1.031	30	23.43	1.026
19 3.28 1.027 22 4.98 1.024 25 7.34 1.021 29 10.93 1.018 33 15.61 1.016 38 21.77 28 3.05 1.018 32 4.68 1.016 36 6.95 1.014 42 10.40 1.012 49 14.87 1.010 56 20.90	M	12	3.61	1.045	13	5.58	1.041	15	8.13	1.035	<u></u>	11.88	1.029	21	16.71	1.025	24	23.13	1.022
28 3.05 1.018 32 4.68 1.016 36 6.95 1.014 42 1.040 1.012 49 14.87 1.010 56 20.90	Z	16	3.28	1.027	22	4.98	1.024	25	7.34		53	10.93	1.018	33	15.61	1.016	38	21.77	1.013
	Δ.	28	3.05	1.018	32	4.68	1.016	36	6.95		42	10.40	1.012	49	14.87	1.010	56	20.90	1.009

Table D-5

			0."	~	~~	en.	·	F							10			10	·	ç	*****			e		~~	
	중동점		90.00	00.008	00.008	90.008	700.00	700.00	200.00	900:00	90.006	00.00	90.00	00.00	00.005	00.00	00.00	00.002	00.004	00.004	90.00	00.004	00.004	00.004	90.003	60.003	4.00 00.003
	ರಿಕರ್		3.76	3.77	3.78	3.79	3.80	3.81	3.82	3.83	3.84	3.85	3.86	3.87	3.88	3.89	3.90	3.91	3.92	3.93	3.94	3.95	3.96	3.97	3.98	3.99	
\mathbf{y}^1	ಪ್ರಕ್ರವ		00.022	00.022	00.021	00.020	00.019	00.019	00.018	00.017	00.017	00.016	00.015	00.015	00.014	00.014	00.013	00.013	00.012	210.00	00.011	00.011	00.010	010.00	00.010	600.00	600.00
ilit	ಶೌಶಶೌ		3.51	3.52	3.53	3.54	3.55	3.56	3.37	3.58	3.59	3,60	3.61	3.62	3.63	29.82	3.65	3.66	3.67		3.69	3.70	3.71	3.72	3.73	3.74	3.75
Known Variability	중동관		950:00	00.054	00.052	00.050	00.048	00.047	00.045	00.043	00.042	00.040	00.039	00.038	00.036	00.035	00.034	00.032	00.031	00:030 3.68	00:020	00.028	00.027	00.026	00.025	00.024	00.023
n Vē	ವಿಕರ್		3.26	3.27	3.28	3.29	3.30	3.31	3.32	333	3.34	3.35	3.36	3.37	338	3.39	3.40	3.41	3.42	3.43	3.44	3.45	3.46 (3.47	3.48	3.49	
10W1	ಸ್ಥಿಕ್ಷ		00.131	00.126	00.122	00.118	00.114	00.111	00.107	00.103	00.100	00.097	00.094	060:00	00.087	00.084	00.082	00.00	90.076	00.074	170.00	690.00	00.066	00.064	00.062	090.00	00.058 3.50
Ϋ́	<u>ವಿಕರ್</u>		3.03	3.02 (3.03	3.04	3.05	3.06	3.0.7	3.08	3.09	3.10	3.11 (3.12	3.13 (% 14	3.15	3.16	3.17 (3.18	3.19	3.20 (3.21 (3.22 (3.23 (3.24	3.25 (
Based on	FP 유명		00.289	06.280	00.272	00.264	00.256	00.248	06.240	00.233	00.226	00.219	00.212	00.205	00.199	00.193	00.187	00.181	00.175	00.169	90.164	00.159	00.154	00.149	00.144	00.139	00.135
asec	ವಿಕ <i>ರ</i>		2.76	2.77	65 C:i	2.79	2.80	2.81		2.83	2.84	2.85	2.86		2.88	2.89	2.90	2.91		2.93	2.94	2.95	967			2.99	
s B	කි ප්කි		00.604	00.587	00.570	00.554	00.539	00.523	00.508 2.82	00.494	00.480	00.466	00.453	00.440 2.87	00.427	00.415	00.402	00.391	00.379 2.92	99500	00.357	00.347	00.336	00.326 2.97	00.317 2.98	00.307	00.298 3.00
Plans	822		2.53	2.52	2.53	2.54	2.55	2.56	2.57	2.58	2.59	2.60	2.61	2.62	2.63	26.5	2.65	2.66	2.67	2.68	2.69	2.70	2.71	2.72	2.73	2.74	2.75
for I	ವಿಕ್ಕನ		01.191	01.160	01.130	01.101	01.072	01.044	01.017	066.00	00.964	96,939	00.914	90.889	90.866	00.842	00.820	30.798	00.776	00.755	00.734	00.714	90.695	90.676	759'00	00.639	00.621
ng f	ಎ್ಡಿಎ		2.26	2.27	2.28	2.29	2.30	2.31	2.32 01.017	2.33	2.34	2.35	2.36	2,37	2.38	2.39	2.40	2.41	2.42	2.43	2.44	2.45	2.46	2.47	2.48 00.657	2.49	2.50 00.621
rmi	E 35		02.222	02.169	02.138	02.068	02.018	01.970	01.923	01.876	01.831	01.786	01.743	01.700	01.659	01.618	01.578	01.539	01.500	01.463	01.426	390	01.355	01.321	01.287	01.255	2.25 01.222
nfo	ಕ್ರಿಕರ		2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	81.7	2.19	2.20 (2.21	2.22	2.23	2.24	2.25
11100	ಹಿಕ್ಕೆ		03.920	1.77 03.836	03.754	03.673	33.593	03.515	1.82 03.438	03.362	03.288	1.85 03.216	03.144	1.87 03.074	03.005	02.938	32.872	02.807	1.92 02.743	02.680	02.619	02.559	02.500	1.97 02.442	1.98 02.385	02.330	02.275
$\overset{N}{N}$	ರೌಶರ್		1.76		2/:	1.79	1.80 03.	1.81	58.1	88	8	.85	1.86	.87	88	œ.	1.90 02.	5		1.93	1.94	1.95	96:1	1.9.1	.9e	1.99	2.00 (
age	P o P		06.552	06.426	06.301	06.178	06.057	05.938	05.821	05.705	05.592	05.480	05.370	05.262	05.155	05.050	04.947	04.846	04,746	04.648	04.553	04.457	04,363	04.272	04.182	04.093	04.006 2.00 02.275
cent	ಧಿಕಧೆ		1.51	1.52	1.53	3	1.55	1.56	1.57	1.58	66.1	09:1	[9]	1.62	1.63	3	1.65	1.66	1.67	3.68	1.69	1.70	1.71	1.72	1.73	1.74	1.75
Lot Percentage Nonconforming	ಹಿಕ್ಕೆ		10.383	10.204	10.027	09.853	089.680	09.510	09.342	09.176	09.012	08.851	169.80	08.534	08.379	08.226	08.076	726.70	07.780	07.636	07.493	07.353	07.214	07.078	06.944	06.811	06.681
ot	ವೌಶವ್		1.26	1.27	1.28	1.29	<u></u>	1.31	1.32	133	<u> </u>	135	3%	1.37	1.38	1.39	1.40	4.	777	1.43	2	1.45	1.46	1.47	1.48	1.49	1.50
the I	등 전		15.625	15.386	15.150	14.917	14.686	14.457	14.231	14.007	13.786	13.567	13.350	13.136	12.924	12.714	12.507	12.302	12.100	11.900	11.702	11.507	11.314	11.123	10.935	10.749	10.565
	ವಿಕರ್		61		1.03	1.04	1.05	90:1	1.07	1.0%	60:1	1.16	Ē	1.12	1.13	1.14	1.15	1.16	1.17	3.18	1.19	1.20	1.21	1.22	1.23	1.34	1.25
Table for Estimating	වූ පැදු	-	22.363	22.065 1.02	21.770	21.476	21.186	20.897	20.611	20.327	20.045	19.766	19.489	19.215	18.943	18.673	18.406	18.141	17.879	17.619	17.361	17.106	lé.853	.97 16.662	.98 16.354	16.109	.75 22.663 1.00 15.866 1.25 10.565 1.50
stin	ರ್ಶಿಕರ್	 	.76	.77	.78	.79	Se.	.83	.82	8.	22	28	.86	<u>%</u>	 8.	68	06	16:	.92	.93	46	.95	%:	1 26		1	90:1
ır E	ವಿಕ್ಷ		30.503	0.153	29.806	.54 29.460	55 29.116	56 28.774	8.434	28.096	59 27.760	60 27.425	27.093	.62 26.763	26.435	.64 26.109	.65 25.785	.66 25.463	.67 25.143	.68 24.825	24.510	.70 24.196	23.885	.72 23.576	23.270	22.965	2.663
e fc	වී වී ප්		51	55.	.53		55 2			.58			19.		63					.68	69		7.1		.73	74	
[ab]	돌등관		.26 39.745	.27 39.358 .52 30.153	38.974	38.591	38.209	37.828	.32 37.448 .57 28.434	37.070	36.693	36.317	35.942	37 35.569	35.197	34.827	.40 34.458	34.090	.42 33.724	33,360	32.997	.45 32.636	32.276	.47 31.918	.48 31.561	31.207	.50 30.854
	ಶಿಶಶ		3%		38	প্র	8	31		33	<u>설</u>	35	3%		38	9£		4.		£.	<u>2</u>		94			649	
	ನ್ನಿಕ ಸ್ಟ		103.64 10.	.02 49.202	48.803	.04 48.405	05 48.006	47.608	.07 47.210	46.812	.09 46.414	10 46.017	45.620	.12 45.224	44.828	.14 44,433	15 44.038	.16 43.644	.17 43.251	.18 42.858	19 42.465	.20 42.074	41.683	22 41.294	23 40.905	40.517	40.129
	್ಟಿಕರೆ	8	G	.02	(S)	Ź	<u>.</u>	,0°.	6	8	<u>.</u>	9	==	-12		Z.	<u>:</u>	2º:		es:	<u></u>	28	- 	22	23	42	3

¹Values tabulated are read in percent.

AQ (% N	L lef)	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
F	σ	0.147	0.152	0.157	0.165	0.174	0.184	0.194	0.206	0.223	0.243	0.271

The MPSD may be obtained by multiplying the factor $F \sigma$ by the difference between the upper specification limit U and the lower specification limit L. The formula is MPSD = $F \sigma (U - L)$.

The MPSD indicates the greatest allowable magnitude of the process standard deviation when using plans for the double specification limit case with known variability. If the process standard deviation is less than the MPSD, there is a possibility but not a certainty that the lot will be accepted.

APPENDIX D

Definitions

Symbol	Read	Definition
n		Sample size for a single lot.
$\overline{\mathrm{X}}$	X bar	Sample mean. Arithmetic mean of sample measurements from a single lot.
σ	Sigma	Known variability. The predetermined variability of the quality characteristic which will be used with the variability known acceptability plans.
U		Upper specification limit.
L		Lower specification limit.
k		The acceptability constant given in Tables D-1 and D-2.
V		A factor used in determining the quality indices when using the known variability acceptability plan. The v values are given in Tables D-3 and D-4.
$\mathbf{Q}_{ ext{U}}$	Q sub U	Quality index for use with Table D-5.
$\mathbf{Q}_{ ext{L}}$	Q sub L	Quality index for use with Table D-5.
$p_{\scriptscriptstyle m U}$	p sub U	Sample estimate of the lot percent nonconforming above U from Table D-5.
$p_{\scriptscriptstyle m L}$	p sub L	Sample estimate of the lot percent nonconforming below L from Table D-5.
p		Total sample estimate of the lot percent nonconforming $p = p_U + p_L$
M		Maximum allowable percent nonconforming for sample estimates given in Tables D-3 and D-4.
$ m M_{U}$	M sub U	Maximum allowable percent nonconforming above U given in Tables D-3 and D-4. (For use when different AQL values for U and L are specified.)
$ m M_{L}$	M sub L	Maximum allowable percent nonconforming below L given in Tables D-3 and D-4. (For use when different AQL values for U and L are specified.)
\overline{p}	p bar	Sample estimate of the process percent nonconforming, i.e., the estimated process average.
$\overline{p}_{ m U}$	p bar sub U	The estimated process average for an upper specification limit.
$\overline{p}_{ ext{L}}$	p bar sub L	The estimated process average for a lower specification limit.
<	Less than	Less than.
>	Greater than	Greater than.
\sum	Sum of	Sum of.
T		AQL symbol denoting plan used exclusively on tightened inspection (provides identification of appropriate OC curve).

SECTION E

APPENDIX

MATCH WITH ANSI Z1.4

E1. INTRODUCTION

The original version of this variables inspection standard (ANSI/ASQC Z1.9-1972) corresponded directly to the military standard MIL-STD-414 dated 11 June 1957, just as the attributes inspection standard ANSI/ASQC Z1.4 corresponded to MIL-STD-105D, dated 29 April 1963. The plans contained in these variables and attributes standards were, however, not matched. Subsequent to the promulgation of these standards, the International Organization for Standardization Working Group C, in June 1974, presented a procedure for roughly matching the MIL-STD-414 and MIL-STD-105D Normal plans by a realignment of the MIL-STD-414 code letters.* It is this realignment which was used as a basis of the ANSI/ASQC Z1.9-1980 and subsequent revisions.

The extent to which the plans of ANSI/ASQ Z1.9-2003 match those of ANSI/ASQ Z1.4-2003 is shown in the following tables which give:

Table 1—Matching Code Letters Table

Table 2—ANSI/ASQ Z1.9-2003 percentage points for the 95, 50, 10th percentiles.

Table ANSI/ASQ Z1.4-2003 percentage points for the 95, 50, 10th percentiles.

Table 4—Difference between ANSI/ASQ Z1.9-2003 and ANSI/ASQ Z1.4-2003 percentiles.

The percentage points are the percents nonconforming having probability of acceptance equal to the percentiles shown. Table 4 can be employed by the user to determine the practical significance of the difference in the operating characteristics of the corresponding plans in ANSI/ASQ Z1.4-2003 and ANSI/ASQ Z1.9-2003.

Procedures for switching to and from tightened or reduced inspection were taken directly from MIL-STD-105D, eliminating the use of limit numbers for reduced inspection and also the procedure allowing termination of reduced inspection without either acceptance or rejection criteria being met.

E2. TABLES

Tables showing the extent to which ANSI/ASQ Z1.9-2003 matches ANSI/ASQ Z1.4-2003 follow.

*Working Group C, ISO/TC69, "Sampling by Variables," April 1974, Draft.

E2—Tables

Table 1
Matching Code Letters and ANSI/ASQ Z1.9-2003 Sample Size

ANSI/ASQ Z1.9-2003 Sample Size, Normal Inspection, Level II	ANSI/ASQ Z1.9-2003 New Code Letter	ANSI/ASQC Z1.9-1972 (414) Old Code Letter	ANSI/ASQ Z1.4-2003 (105) Matched Code Letter
3	В	В	В
4	С	C	С
5	D	D	D
7	E	E	Е
10	F	F	F
15	G	G	G
20	Н	H	H
25	I	Ī	H
35	3	K	J
50	K	M	K
75	L	N	L
100	M	О	M
150	N	p	N
200	P	Q	P

Table 2
ANSI/ASQ Z1.9-2003 Percentage Points in Terms of Percent Nonconforming

Probability	ANSI/ASQ Z1.9-2003											
of	Code					Acce	otance Qu	ality Limi	ts			
Acceptance	Letter	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
95.0									1.04	1.89	3.52	6.02
50.0	В								16.68	20.30	25.22	30.97
10.0									49.34	52.83	57.24	62.08
95.0							.44	.69	1.32	2.29	4.13	6.85
50.0	C						9.52	11.28	14.44	17.93	22.89	28.61
10.0							34.88	37.26	41.15	45.05	50.13	55.55
95.0						.28	.46	.77	1.38	2.43	4.30	7.11
50.0	D					6.34	7.82	9.71	12.47	15.97	20.75	26.40
10.0						25.94	28.40	31.24	34.98	39.25	44.55	50.32
95.0		***********		.11	.18	.32	.53	.83	1.50	2.65	4.57	7.46
50.0	\mathbf{E}			2.89	3.72	4.83	6.18	7.69	10.28	13.66	18.11	23.53
10.0				14.42	16.33	18.60	21.09	23.58	27.43	31.93	37.28	43.25
95.0			.07	.12	.21	.36	.57	.94	1.65	2.83	4.84	7.81
50.0	F		1.53	2.08	2.79	3.77	4.82	6.33	8.62	11.69	15.91	21.09
10.0			7.95	9.44	11.15	13.23	15.23	17.84	21.40	25.66	30.99	36.98
95.0		.06	.09	.15	.25	.45	.68	1.09	1.91	3.09	5.30	8.41
50.0	G	.90	1.17	1.57	2.20	3.09	3.99	5.32	7.51	10.15	14.27	19.25
10.0		4.31	5.07	6.13	7.58	9.41	11.12	13.38	16.77	20.48	25.76	31.63
95.0		.07	.11	.17	.29	.49	.79	12.1	2.07	3.39	5.69	8.88
50.0	H	.76	1.01	1.38	1.90	2.69	3.66	4.81	6.86	9.51	13.49	18.31
10.0		3.16	3.85	4.73	5.88	7.46	9.23	11.14	14.25	17.94	23.01	28.70
95.0		.08	.12	.20	.32	.56	.85	1.28	2.23	3.61	5.98	9.27
50.0	I	.68	.89	1.28	1.73	2.53	3.39	4.47	6.54	9.12	13.00	17.74
10.0	-	2.55	3.08	3.99	4.93	6.46	7.97	9.73	12.81	16.34	21.24	26.82
95.0		.09	.13	.23	.36	.60	.94	1.40	2.38	3.80	6.21	9.65
50.0	J	.59	.76	1.10	1.54	2.21	3.05	4.05	5.98	8.41	12.10	16.82
10.0	3	1.90	2.29	3.02	3.87	5.10	6.50	8.07	10.85	14.11	18.71	24.23
95.0		.10	.15	.26	.40	.64	1.02	1.49	2.51	4.04	6.52	10.00
50.0	K	.19	.65	.98	1.37	1.94	2.76	3.68	5.48	7.90	11.45	16.00
10.0	2.1.	1.36	1.70	2.35	3.07	4.03	5.33	6.72	9.23	12.39	16.72	21.98
95.0	~~~~~~~~~	.11	.17	.27	.43	.70	1.06	1.58	2.62	4.18	6.81	10.34
50.0	L	.40	.56	.82	1.19	1.74	2.43	3.34	5.02	7.29	10.84	15.24
10.0	A.D	.97	1.27	1.74	2.37	3.24	4.28	5.58	7.82	10.70	14.94	19.95
95.0		.12	.18	.29	.47	.74	1.12	1.66	2.73	4.31	6.97	10.51
50.0	M	.37	.51	.77	1.12	1.64	2.31	3.18	4.80	7.00	10.45	14.75
10.0	IVI	.80	1.05	1.50	2.06	2.86	3.81	5.01	7.11	9.84	13.89	18.73
95.0		.13	.19	.31	.48	.77	1.18	1.73	2.82	4.41	7.07	10.80
50.0	N	.13	.46	.51 .69	1.00	1.48	2.14	2.96	2.82 4.49	6.59	9.90	14.28
10.0	<u> </u>	.62	.85	1.21	1.68	2.36	3.26	4.34	6.26	8.78	12.58	17.44
***************************************							~~~~~~		~~~~~			
95.0 50.0	P	.143 .321	.210 .445	.344 .683	.534 1.000	.84 1.48	1.25 2.08	1.86 2.96	3.00 4.48	4.66 6.58	7.40 9.88	11.22 14.27
10.0	ŀ	.571	.763	1.116	1.567	2.22	3.02	4.12	5.98	8.45	12.19	16.98
10.0		.371	.103	1,110	1.507	de e de de	2.02	7.12	2.70	0.45	12.17	10.20

Table 3
ANSI/ASQ Z1.4-2003 (MIL-STD-105) Percentage Points in Terms of Percent Nonconforming

Probability of	ANSI/ASQ Z1.4-2003					Acce	ptance Qu	ality Limi	its			
Acceptance	Code Letter	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
95.0										1.70		
50.0	В									20.6		
10.0										53.6		
95.0			~~~~~			~~~~~~		~~~~	1.02	*************	~~~~	7.63
50.0	C								12.9			31.4
10.0									36.9			58.4
95.0								.64			2.64	11.1
50.0	D							8.30			20.01	32.1
10.0								25.0			40.6	53.9
95.0							.394			2.81	6.63	11.3
50.0	E						5.19			12.6	20.0	27.5
10.0							16.2			26.8	36.0	44.4
95.0						.256			1.80	4.22	7.13	14.0
50.0	F					3.41			8.25	13.1	18.1	27.9
10.0						10.9			18.1	24.5	30.4	41.9
95.0					.161			1.13	2.59	4.39	8.50	13.1
50.0	G				2.14			5.19	8.29	11.4	17.5	23.7
10.0					6.94			13.38	15.8	19.7	27.1	34.1
95.0				.103			.712	1.66	2.77	5.34	8.20	12.9
50.0	H			1.38			3.33	5.31	7.30	11.3	15.2	21.2
10.0				4.50			7.56	10.3	12.9	17.8	22.4	29.1
95.0			.064			.444	1.03	1.73	3.32	5.06	7.91	11.9
50.0	J		.863			2.09	3.33	4.57	7.06	9.55	13.3	18.3
10.0			2.84			4.78	6.52	8.16	11.3	14.2	18.6	24.2
95.0		.0410			.284	.654	1.09	2.09	3.19	4.94	7.40	11.9
50.0	K	.554			1.34	2.14	2.94	4.54	6.14	8.53	11.7	17.3
10.0		1.84			3.11	4.26	5.35	7.42	9.42	12.3	16.1	22.5
95.0				.178	.409	.683	1.31	1.99	3.09	4.62	7.45	
50.0	L			.839	1.34	1.84	2.84	3.84	5.33	7.33	10.8	
10.0				1.95	2.66	3.34	4.64	5.89	7.70	10.1	14.1	
95.0			.112	.259	.433	.829	1.26	1.96	2.94	4.73		
50.0	\mathbf{M}		.534	.848	1.17	1.80	2.43	3.39	4.66	6.88		
10.0			1.23	1.69	2.12	2.94	3.74	4.89	6.39	8.95		
95.0		.071	.164	.273	.523	.796	1.23	1.85	2.98			
50.0	N	.336	.535	.734	1.13	1.53	2.13	2.93	4.33			
10.0		.778	1.06	1.34	1.86	2.35	3.08	4.03	5.64			
95.0		.102	.171	.327	.498	.771	1.16	1.86				
50.0	P	.334	.459	.709	.959	1.33	1.83	2.71				
10.0		.665	.835	1.16	1.47	1.93	2.52	3.52				
95.0		.109	.209	.318	.494	.740	1.19					
50.0	Q	.294	.454	.614	.853	1.17	1.73					
10.0		.534	.742	.942	1.23	1.61	2.25					
95.0		.131	.199	.309	.462	.745						
50.0	Q	.284	.384	.533	.733	1.08						
10.0		.464	.589	.770	1.01	1.41						

Table 4
Difference in Percentage Points—ANSI/ASQ Z1.9-2003 Minus
ANSI/ASQ Z1.4-2003 (MIL-STD-105)

Probability	ANSI/ASQ Z1.4-2003	ANSI/ASÇ Z1.9-2003	-										
of	Code	Code					Accepta	nce Quali	ty Limit	;			
Acceptance	Letter	Letter	.10	.15	.25	.40	.65	1.00	1.50	2.50	4.00	6.50	10.00
95.0											.19		
50.0	В	В									30		
10.0											77		
95.0										.30			78
50.0	C	C								1.54			2.79
10.0										4.25			-2.85
95.0									.13			1.66	-3.99
50.0	D	D							1.41			.65	-5.70
10.0									6.24			3.95	-3.58
95.0								.136			16	-2.06	3.84
50.0	E	\mathbf{E}						.99			1.06	-1.89	-5.70
10.0			~~~~					4.89	***********		5.13	1.28	-1.15
95.0							.104			15	-1.39	-2.29	-6.19
50.0	F	\mathbf{F}'					.36			.37	-1.41	-2.19	-6.81
10.0				***************************************			2.33			3.30	1.16	.59	-4 .52
95.0						.089			04	68	-1.30	-3.20	-4.69
50.0	G	G				.06			.13	76	-1.25	-3.23	-4.45
10.0						.64			1.78	.97	.78	-1.34	-2.47
95.0					.067			.078	.45	70	-1.95	-2.51	-4.02
50.0	${f H}$	H			.000			.33	50	44	-1.79	-1.71	-2.89
10.0					.23			1.67	.84	1.35	.14	.61	40
95.0								.138	38	54	-1.73	-2.22	-3.63
50.0	I	I						.06	84	76	-2.18	-2.20	-3.46
10.0								.41	57	09	-1.46	-1.16	-2.28
95.0	_			.066			.156	09	33	94	-1.26	-1.70	-2.25
50.0	J	J		103			.12	28	52	-1.08	-1.14	-1.20	-1.48
10.0				55			.32	02	09	45	09	.11	.03
95.0	Tr	7.7	.059			.116	014	07	60	68	90	88	-1.90
50.0	K	K	364			.03	20 23	18	86	66	63	25	-1.30
10.0			48			04		02	70	19	.09	.62	52
95.0	¥	7			.092	.021	.017	25	41	47	44	64	
50.0 10.0	L	L			019 21	15 29	10 10	41 36	50 31	31 .12	04 .60	.04 .84	
*******************				260		~~~~~	~~~~~					.04	
95.0 50.0	λ.5	'R A'		.068 022	.031	.037 05	089	14	30 21	21	42		
10.0	M	M		022 18	078 19	05 06	16 08	12 07	21 .12	.14 .72	.12 .89		
			050								.02		
95.0 50.0	N	N	.059 015	.026 075	.037 044	043 13	026 05	05 .01	12 .03	.16 .16			
10.0	1.4	IN	158	075 21	044 13	13 18	03 01	.18	.03	.62			
				.039						سدن.			
95.0 50.0	P	P	.041 013	014	.017 026	.036 .041	.069 .15	.09 .25	.00 .25				
10.0	1	7	013 094	072	044	.097	.29	.50	.60				
x V + V				• CF 7 /44					700				

Quality Press
600 N. Plankinton Avenue
Milwaukee, Wisconsin 53203
Call toll free 800-248-1946
Fax 414-272-1734
www.asq.org
http://qualitypress.asq.org
http://standardsgroup.asq.org
E-mail: authors@asq.org

T009
Printed in the United States of America