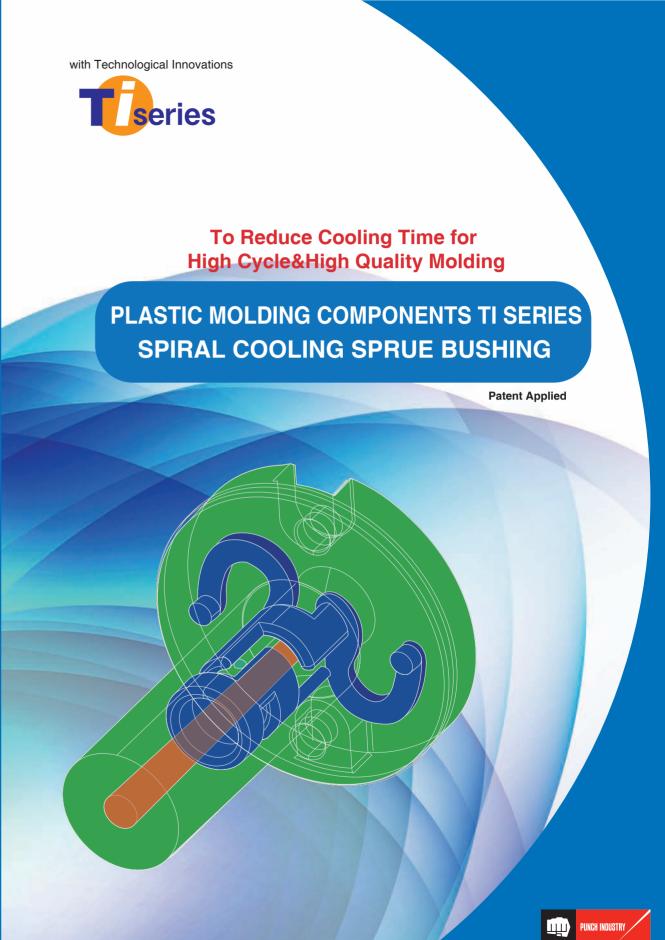
Company Profile


Name:	PUNCH INDUSTRY CO.,LTD					
MD:	MORIKUBO YUJI					
Head office:	MEISAN-TAKAHAMA BLDG.,8F,2-12-23,KONAN,MINATO-KU,TOKYO,108-0075,JAPAN					
Plant:	PUNCH INDUSTRY CO.,LTD					
	KITAKAMI PLANT. 21-26-17,MURASAKINO,KITAKAMI-CITY,IWATE Pref.024-0004,JAPAN. TEL(0197)68-3087 FAX(0197)68-3086					
	MIYAKO PLANT. 29-1,UENO,DAIICHICHIWARI,MATSUYAMA,MIYAKO-CITY,IWATE Pref.027-0037.JAPAN. TEL(0193)62-8007 FAX(0193)63-6007					
	HYOGO PLANT. 922-202, AZA-HIGASHIHATA, TSUNEYOSHICHO,KASAI-CITY. HYOGO TEL (0790) 47-8077 FAX (0790) 47-8008					
	LOGISTICS CENTER Tokyo					
	AFFILIATED COMPANIES					
	PINTEC Industry Co.,Ltd					
	PUNCH INDUSTRY (Dalian) CO.,LTD. PUNCH INDUSTRY (Wafangdian) CO.,LTD PUNCH INDUSTRY (Wuxi) Co.,LTD PUNCH INDUSTRY (Dongguan) CO.,LTD.					
Sales Office:	Kitakami, Sendai, Niigata, Utsunomiya, Kita-Kanto, Kanto, Nagano, Shizuoka, Kanazawa, Nagoya, Kyoto, Osaka, Hiroshima, Fukuoka, OVERSEAS Division					
Capital:	382,500,000 yen					
Sales turnover:	14,348 million yen (Mar.2011)					
Established:	29 th Mar. 1975					
Bank:	Bank of Tokyo-Mitsubishi UFJ, Ltd., Resona Bank, Ltd., Mizuho Corporate Bank, Ltd., Sumitomo Mitsui Banking Corporation, Shoko Chukin Bank					

www.punch-ti.com

■ For business inquire

Overseas division
MEISAN-TAKAHAMA BLDG.,8F,2-12-23,KONAN,MINATO-KU,TOKYO,108-0075,JAPAN
TEL (03) 3472-0087 FAX (03) 3472-0097
info@punch.co.jp

BE COMPETITIVE! with Technological Innovations

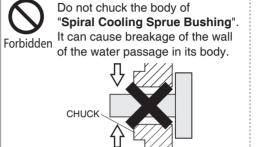
The "Ti series" which congregates high technology standard components has been born in order to propose brand-new solutions to customers. The spiral cooling sprue bushing is the first product of "Ti series" . And Punch Industry will keep on creating a product which can offer a new value to you.

'Ti series' will provide you

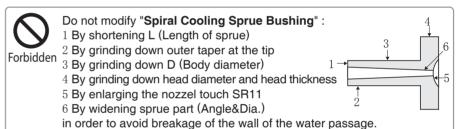
Improving competiveness

Upgrading existed equipment

Creating new value


INDEX

Instruction2
Features of spiral cooling sprue bushing3
Effects5
Notes for molding7
Tip addition8
Spiral cooling sprue bushing9
Characters of plastic material (1)11
Characters of plastic material (2)13
Warranty clause14


◆ NOTANDUMS

INSTRUCTION

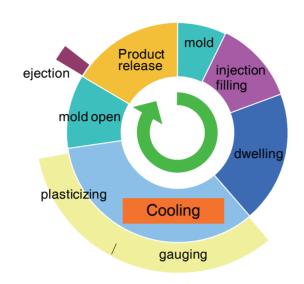
Please read this instruction carefully before use.

You MUST use a spring collet to chuck softly "Spiral Cooling Sprue Bushing" only when necessarv.

• Please contact us when additional process to "Spiral Cooling Sprue Bushing" is needed.

◆ Accessory List Please check these before use.

Spiral Cooling Sprue Bushing				
Cap Screw	CCB5-12 (M5-12)	2		
O ring	OORP6 [Fluoric rubber (JIS Class 4 D)]	2		


- Usable temperature range for O ring −15~150°C
- Please contact us when it needs additional process to outer Dia., internal Dia. and/or etc. since there is a water passage in its body.

♦ Suggested condition of use

- A multiple of cooling media are available with this water passage. *Cooling medium should be filtered.
- Be sure to do optimum corrosion control treatment when idle.

▶ Spiral cooling sprue bushing

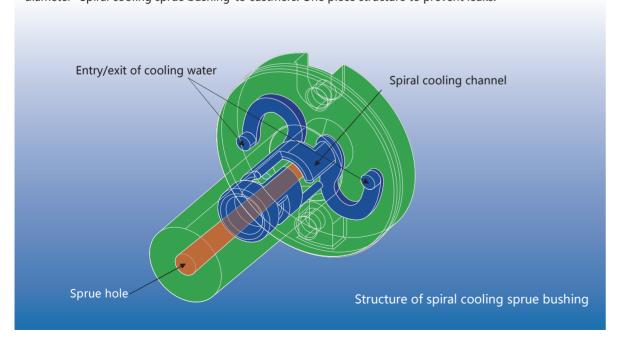
In plastic injection molding process, the cooling process takes the longest time in each molding cycle. Especially, with small and/or microscopics products, the sprue is one of the parts that needs long time to solidify because of its thickness. In general, it can be cooled by cooling channel in the mold plates. For the efficiency of heat exchange, the sprue part may be low, because these channels are mainly used to cool product. Punch's new product "Spiral Cooling Sprue Bushing" is made by using the latest technology "Selective Laser Sintering with Milling Method". It can cool the sprue part directly with 3D water passage structure inside itself, and cooling medium is able to run into the water passage close to the heat spot. Therefore, it contributes to improving production preformance in molding.

▶ Features of "Spiral cooling sprue bushing"

Improving production perfomance

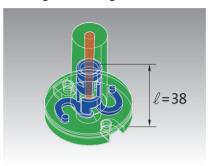
1)For trouble-free molding and durability improvement Mold temperature control and prevention of stringiness

2)Cost reduction


Improving production effciency

Reducing power consumption

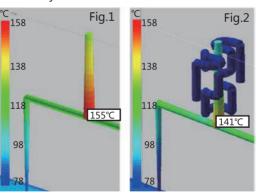
3)High-cycle molding


Reducing the cooling time

We achived the manufacture of spiral-type cooling passage inside the sprue bushing and we also offer small diameter "Spiral cooling sprue bushing" to custmers. One piece structure to prevent leaks.

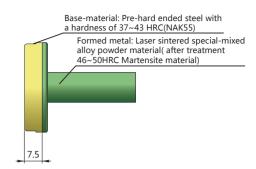
▶ Specification

Spiral cooling sprue bushing is made of two materials. one is base-material with a hardness of 40HRC, and another is a metal forming from special-mixed alloy powder which is processed by selective laser sintering with milling method.



There is no leak because the interface of base-material and metal forming part is fused completely.

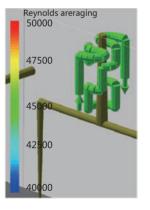
►Instance of cooling performance simulation


When ABS resin at 230°C is filled from a plastics injection machine. The sprue part of under solidification which showed a high temperature at 151°C, it remains in critical condition for continuous molding.(*Fig. 1 shows the result). By using the Spiral cooling sprue bushing, it can take control of a heat spot to 141°C from 155°C. .(*Fig. 2 shows the result). As a result, user can reduce the cooling time, and can move more stable molding condition.

*The table below shows the molding condition for this analysis.

Molding condition

Material	ABS resin
Temperature of a injection nozzle	230℃
Die temperature	40°C
Cooling medium	water
Flow rate	7l/minabove
Molding cycle	25 sec


Cooling passage cubage rate

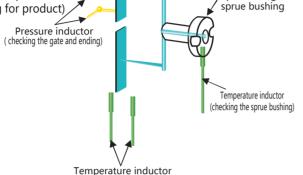
D	ℓTotal volume mm³	cooling passage cubage mm ³	cooling passage cubage rate
13	3311	707	21.4%
16	5228	814	15.6%
20	8407	1377	16.4%

The cooling passage is manufactured 38 mm from the shoulder.

► Reynolds averaging of cooling medium flow volume

The water passage optimized for improving reynolds averaging by using exclusive analysis software, as a result, the cooling medium was able to flow smoothly ,and achieved to take control of a heat spot more efficiently.

Re=UL/ (μ / p) = UL $/\nu$ U:special speed (m/s) L:special length (m) v:eddy viscosity coefficient rate (m²/s) μ :viscosity rate (Pa · s) p:density (kg/m³)

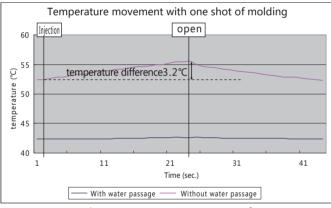

• the diagram is our company conditions, the result will change with the conditions.

▶ Comparison between spiral sprue bushing(with water passage) and normal sprue bushing(without passage)

- Experiment:
 - ① Compared measured temperature by heat sensor (location of measurement :Cav, Cor and Spiral cooling sprue bushing)
 - ② Compared filling pressure of resin by pressure sensor (location of measurement :gate neighborhood and end of filling for product)
 - ③ Evaluated the advantage of reducing molding cycle(with water passage,or without one.)

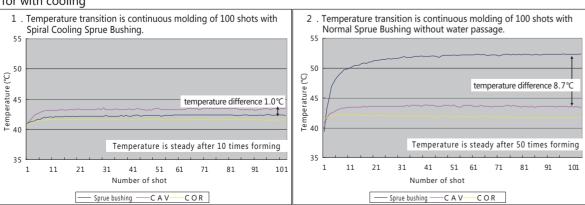
Condition

Material	ABS resin
Gate temperature	230℃
Die temperature	40°C
Cooling medium	water
Flow rate	7ℓ/min above
Cycle (without water passage)	25sec(cooling time 11sec)
Cycle (with water passage)	18.5sec(cooling time 4.5 sec)



Spril cooling

► Stable molding quality! Shift to stable molding in a short time! (checking the Cav.Cor)


In the starting operations of the plastics injection molding, a trial molding is needed until the temperature of the molding die becomes constantly. By using spiral cooling sprue bushing, stable molding can be reached in short time.

Comparison of temperature transition in a shot of molding between ones with and without water passage Compared the temperature transition in a shot between Spiral cooling sprue bushing with water passage or without water passage, the figure below shows that temperature transition has been more stable with water passage, In case of without one, the molding condition became unstable because of fluctuating 3.2°C in a shot

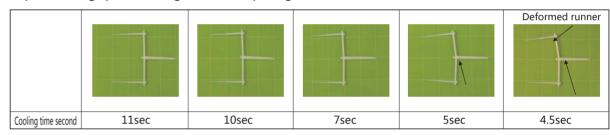
 To compare the temperature movement from start to stable forming between the sprue bushings with and without water passage

The temperature will be steady after 50 times for without cooling, but only 10 times the temperature is steady for with cooling

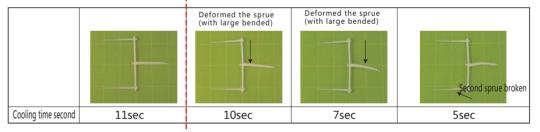
▶ Quality stability(mass change, dimension accuracy) of plastics product

"With a multi-cavity mold, The quality (mass change, dimension accuracy) of plastics product is severely affected by fluctuating the temperature in each molding cycle, we offer to be able to move from a unstable condition to more stable molding condition by using Spiral cooling sprue bushing."

• Inner pressure in molding

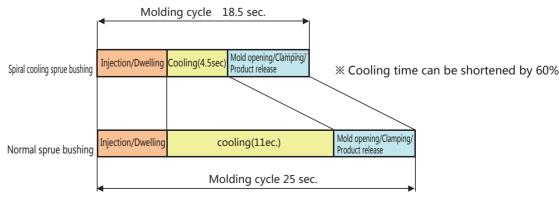

	_				
Location of pressure inductor	Withou	t cooling	With cooling		
Location of pressure inductor	ending	gate nearby	ending	gate nearby	
Top pressure standard difference (Mpa)	0.16	0.30	0.14	0.24	
Total pressure value standard difference (Mp) a	1.15	2.35	1.12	1.73	

• The smaller the value is, the more steady the pressure and the quality are.


▶ Results of molding cycle time

Under the same molding conditions(resin temperature, dwell pressure,etc). We verified the state of sprue and runner made using different processes as show in figures below

• Spiral cooling sprue bushing (with water passage)



Normal sprue bushing (without water passage)

Applicable for molding

Inapplicable for molding

• the diagram is our company conditions, the result will change with the conditions.

Spiral cooling sprue bushing

5

► Case of user

NI	D	characters of	products		Temperature(°C)		Molding cycle(sec.)			Reduce molding
No. Resin		product	Thickness (mm)	Max.thickness (mm)	molding	Sprue bushing	normal sprue bushing	Spiral cooling sprue bushing	Reduce time	cycle time rate %
1	PC+GF30%	Portable player	0.6	1.2	80	60	26	12	14	53.8
2	PET	Power plug of cell phone	0.2	2	80	70	37	15	22	59.4
3	PC	Accessory of cell phone	0.5	0.6	110	90	21	14	7	33.3
4		Drawtube component of digital camera	_	2.6	120	100	13	7	6	46.1
5	ABSburn resistan+GF	Component of motorcycle	2	3	100	100	35	22	13	37.1
6	PBT+GF	Contactor of automobile	0.8	2.2	60	60	18	14	4	22.2
7	PC	LED light guide	0.5	-	_	_	8	4	4	50.0
8	PC	Battery protector	0.25-0.5	-	70	60	12	6.7	5.3	44.1
9	PP	Clapboard	1.5	-	50	50	10	5.3	4.7	47.0
10	PBT	Contactor	0.5	1.5	80	70	16.2	13.1	3.1	19.1

► Target of effect (about structure of molding parts) ► Target of effect (about product thickness)

The time for solidying each part	The effect of using spiral cooling sprue bushing
Solidifying time of product, runner < sprue bushing solidifying	Shorten the cooling time and keep the forming steady
Solidifying time of product, runner sprue bushing solidifying	Forming steady continually

Product Thinckness(mm)	Effect	
0		
1.0	Profound effect	
1.6	Bifurcation (Prod thickness 1.6mm	
2.0	Ineffective	

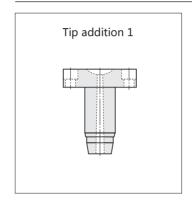
• It is a profound effect when the thickness of product is less than 1.6mm

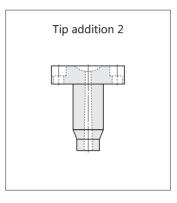
▶ The effect of an increase in the number of products by using Spiral cooling sprue bushing

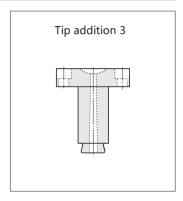
Evaluated cost reduction by reducing molding cycle with spiral cooling sprue bushing. Possible to expect a cost reduction from thousands to millions of yen (shown the table below) Possible to cut the number of die for production by reducing molding cycle

"*The table below shows by common calculational procedure"

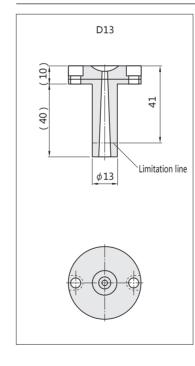
• Cost saving table based on calculation of reduced molding cycle with number of shot (Unit : JPY)

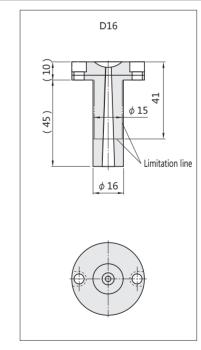

Shortened	Number of shot						
cooling time(sec.)	50,000	100,000	200,000	300,000	500,000	1,000,000	
1	20,833	41,667	83,333	125,000	208,333	416,667	
2	41,667	83,333	166,667	250,000	416,667	833,333	
3	62,500	125,000	250,000	375,000	625,000	1,250,000	
4	83,333	166,667	333,333	500,000	833,333	1,666,667	
5	104,167	208,333	416,667	625,000	1,041,667	2,083,333	
6	125,000	250,000	500,000	750,000	1,250,000	2,500,000	
7	145,833	291,667	583,333	875,000	1,458,333	2,916,667	
8	166,667	333,333	666,667	1,000,000	1,666,667	3,333,333	
9	187,500	375,000	750,000	1,125,000	1,875,000	3,750,000	
10	208.333	416.667	833.333	1.250.000	2.083.333	4.166.667	

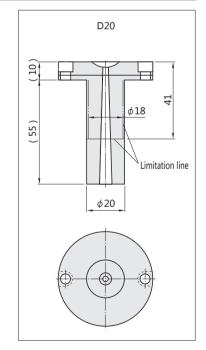

• Evaluate: forming fee=1,500(JPY/hour)


► Tip addition

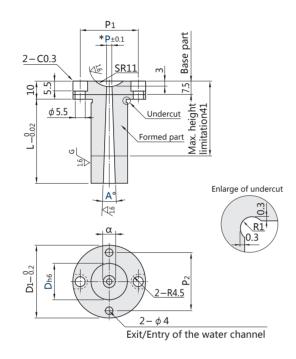
• Feel free to contact us when any hird of special shape is needed.


• Example of tip addition

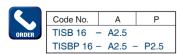


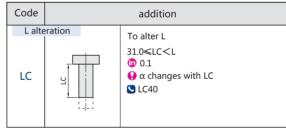


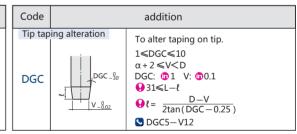
Limitation

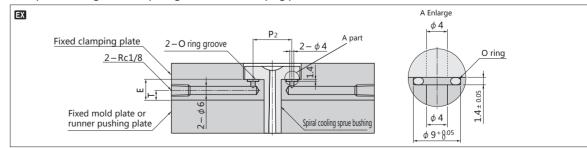


	M Material	H Hardness	(Code		
	w Material	Hardness	Normal	P dimention designation type		
Formed part	Marageing material	46~50HRC	TISB	TISBP		
Base part	NAK55	37 ~ 43HRC	1100	HISBP		
A Accessory: socket head cap screw CCB5 – 12 2pcs						


OORP6 2pcs **Q** Usable temperature range for O ring: −15 ~ 150°C


- Normal type : P=3.5
- Please contact us when it needs additional process to outer Dia., internal Dia. and/or etc. since there is a water passage in its body.
- (Calculation of α) Normal type: $\alpha = 3.5 + 2(L+7)\tan\frac{A}{2}$ P dimention designation type: $\alpha = P + 2(L+7)\tan\frac{A}{2}$
- The hardness of formed part is indicated as average.


Code No.		А	Р		D ₁	P ₁	P ₂	Dh6	
Code	D	<u>@</u> 0.5	(0.5	_	Di		F2	Dnb	
TICE	13	2.0		40	40	30	28	13	0 -0.011
TISB	16	2.0~3.0	2.0 ~ 3.0	45	40			16	
	20	2.0~4.0		55	50	36	35	20	0 -0.013



Code	Sample	Code	Sample	Code	Sample		Additions								
AIW		AHW		AXW		Tip sh Shape A (stage)	ape A O A (T,J,L,P) W, (α − 0.4) \geq W O LC − (t+2) > 31	W · GC							
ATW		AJW		Bolt hole			W t 3 2.5 4 3 5 3.5 6 4								
ALW		APW	(GC.									
BIR	6	BHR	(BXR		Tip sh Shape B (semicircle)	ape B Θ B(T,J,L,P)R, $(\alpha-0.4) \ge 2 \times R$ Θ LC $-(R+2) > 31$	R R 1 1.25 1.5							
BTR		BJR		Bolt hole			BXR3								
BLR		BPR				R		2.5 3 3.5							
CIQK		CHQ CHQK		CXQ CXQK		Tip sh Shape C(circle + tanqent)	ape C $ \begin{array}{c} \bullet \\ \bullet \\ C(T,J,L,P) \ Q \ , \ (\alpha-0.4) \geqslant 1.09 \times Q \\ C(T,J,L,P) \ QK \ , \\ (\alpha-0.4) \geqslant 1.19 \times Q \end{array} $	Q Q 2 2.5 3							
стQ стQк		cjók Cjók	000	Bolt hole		C ₋ Q C ₋ QK	QLC−(Q+2) > 31 CTQ4 CTQK3.5	3.5 4 5 6							
CLQK		CPQ CPQK				\$ 10									

Example of making the water passage in the fixed clamping plate

- The water channels in the fixed clamping plate should be arranged like the example above when fixing the spiral cooling sprue bushing to fixed clamping plate. And O ring should be placed after making a groove for the one at Exit/Entry of the water channel.
- **Q** 15≤E, 7.5≤T
- O ring: OORP6 2pcs

PUNCH INDUSTRY CO., LTD.

Spiral cooling sprue bushing

						Therm	oplastic mate	rial		
				Polythene					Polypr	opylene
			LDPE	HDPE	UHMWPE		Ethane-ethyl acrylate	Ionomer resion	homopolymer	copolymer, 40% fiberglass
	JIS K6899-1			PE-HD	PE-UHMW	EVA	EEA		PP	PP
	pre-drying temperature °C		_	-	_	_	_	_	_	_
공	pre-drying	Time hr	-	_	_	_	_	_	-	_
ΙΞ		Cylinder temperature ℃	150~235	175~260	_	175~220	175~220	150~290	190~290	190~290
l ü	Injection	Molding temperature ℃	20~60	10~60	_	20~60	20~60	20~60	10~60	10~60
a	forming	Forming shrinkage %	2~2.2	1.5 ~ 5	_	0.7 ~ 3.5	0.2~0.6	0.3~1.0	1.0~2.5	1.0~2.5
Forming ability		Flowing rate L/t	120 ~ 240	200~600	_	320				
₹	Extrusion tem	perature °C	150~235	175~275	200~260	150~195	150~195	150~235	200~260	200~260
1)	chemic-electro	oplate	_	_	-	-	_	-	-	_
죵	Plating print		+	+	+	+	+	+	+	+
lä	Vacuum distill	+	+	+	+	+	+	+	+	
l uf	Print		+	+	+	+	+	+	+	+
Re-manufacture	Supersonic we	eld	_	-	_	_	_	_	_	_
Гe	Conqlutinatiio	n	_	-	_	_	_	_	_	_
Cons	sistencyJIS K71	12 g/cm³	0.917~0.932	0.941~0.965	0.94	0.922~0.943	0.93~0.94	0.93~0.96	0.90~0.91	0.89~0.91
	stretch AS	TM D638 MPa	10~20	22~30	38	15~27	4~22	17~37	30~42	28~38
	Ductibility AS	TM D638 %	100~1000	600~1000	425~ 525	300~750	200~900	300~700		
Mechanical	Camber AS	TM D790 MPa	170~500	600~1200		5~20		<40	1100~2000	900~1400
ha	Impulse (Izoc		un-break	210~220	un-break	un-break	un-break	un-break	20~75	60~75
<u>ا تن</u>		Rockwell hardness JISK7202			R50				R80~100	R65~96
1 =		Hardness instrument JISK7215	D44~60	D66~73	D61~63	D17~45	D16~49	D60~65		D70~73
		Bacoor								
1 =	melting point	crystal melting point ℃	98~115	130~140	125~140	40~100			160~175	150~170
lea		vitrify temperature ℃						86~98	- 20	
🖫		(bending force0.455MPa) °C	40~45	80~90	40~50					85~100
esi	(JIS K7207)	(bending force1.8MPa) °C			70~80			40~47	50~60	55~60
Heat-resistant		on rate 10 ⁻⁶ /K	100 ~ 220	60~110				24~28	80~100	70~95
	Heat exchang	e rate W(m⋅K)	0.33 ~ 0.34 seni- transparency - transparency	0.46~0.50				0.24	0.17	0.15~0.17
	皇 transparency					semi-transparency~transparency	semi- transparency	transparency		semi-transparency - transparency
ers	Bibulous (24hı	rs) JIS K7209 %	< 0.01	< 0.01	< 0.01				0.01~0.03	0.03

Thermopiastic material											
Polypropylene		poly	styrene	cinnamic-				ABS		Acrylonitrile/	Acrylonitrile/
copolymer, 40% fiberglass	4-methyl- 1-pentene	Normal	hige-impulse force		cinnamic- acrylonitrile	30% fibergalss	high-riqid	High force resistant	30% fibergalss	Cinnamic / Acrylate	Ethene / Cinnamic
PP-GF40	PMP	PS(GPPS)	SB(HIPS)	SMA	SAN	SAN-GF30	ABS	ABS	ABS-GF30	ASA	AES
-	_	_	_	80	80	80	80	80	80	80	80
-	_	_	_	2~4	2	2	2	2	2	2	2
230~290	270~330	170~250	170~250	220~ 265	180~290	200~290	200~290	200~260	200~260	200~260	200~260
20~90	30~80	20~60	20~80	50~90	50~80	50~80	50~80	60~80	50~80	40~80	40~80
0.3 ~ 0.5	1.6~2.0	0.4~0.7	0.4~0.7	0.4~0.6	0.3~0.5	0.1~0.2	0.1~0.2	0.4~0.9	0.1~0.2	0.5 ~ 0.7	0.4~0.7
		200~500	200~ 500								
200~260		180~250	180~250	90~260	180~230						
-	-						+ +	+ +	+		
+	+	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +
+	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
+	+	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
+	-	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
-	-	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
1.22~1.24	0.83	1.04~ 1.05	1.03~1.06	1.08~1.12	1.06~1.08	1.22~1.3	1.03~1.06	1.01~1.05	1.22	1.05~1.08	1.05~1.06
56~100	15~17	40~57	25~35	35~65	65~80	110~120	40~50	32~42	100~120	27~40	45~50
1.5~4	25~120	1.5~2.5	25~35	1.8~3.0	1~1.2	2	3~25	5~40	2		20~25
7500~10000	450~1300	2200~3200	2000~2700	2200~3100	3200~3700	7000~9000	2000 ~2700	1500~2200	6700	1800~2300	2350~2600
	40			2							
R102~111	R35~80	M70~85	M60~80	M70~80	M80~90	M100~105	R110~115	R85~105	R114~117	R95~115	R100~113
	235~240										
		85~110	93~105	114	125	125	110~125	95~110			
165	100						98~108	95~108	110	93~100	
150~165	80~90	75~90	70~95	101~118	88~94	101~104	95~105	95~102	105~115	85~88	85~105
27~32	65	60~80		80~90	65~68	38~40	80~100	95~110	38~40	80~90	60~100
0.4	0.12	0.13					0.21~0.23	0.21~0.23			
İ	transparency	transparency		transparency	transparency		ivory	ivory		ivory	ivory
	0.01	0~0.03	0.04~0.07	0.1	0.2~0.3	0.15~0.3	0.2~0.45	0.2~0.45	0.15~0.3	0.3 ~ 0.4	0.3

					Т	hermoplastic m	aterial		
			PV	/C			polyam	ide (nylon)	
			Hard	Soft	polymethyl methacrylate	nylon6	30% fiberglass	nylon66	30% fiberglass
	JIS k	H-PVC	S-PVC	PMMA	PA6	PA6-GF30	PA66	PA66-GF30	
п	pre-drying	temperature °C	-	_	80	80	80	80	80
9	pre-drying	Time hr	-	_	2~6	8~15	8~15	8~15	8~15
Forming ability		Cylinder temperature °C	150~200	150~200	180~280	230~ 290	230~290	265~ 300	265~300
JQ .	Injection	Molding temperature °C	10~80	10~20	40~90	40~120	40~120	80~120	80~120
<u>ab.</u>	forming	Forming shrinkage %	0.1~0.5	0.1~0.5	0.1~0.4	0.5~1.5	0.3 ~ 0.5	1.7~2.2	0.2~0.6
Į		Flowing rate L/t	160~250	150~ 500	200~ 500	400~600		800	
`	Extrusion tem	perature ℃	160~200	150~200	180~260	230~275			
٠, ١	chemic-electr	oplate							
1)	Plating print		+ +	+ +	+ +	+ +	+ +	+ +	+ +
Re-manufacture	Vacuum distill plating		+ +	+ +	+ +	+	+ +	+	+
a	Print		+ +	+ +	+ +	+ +	+ +	+ +	+ +
fact	Supersonic weld		+ +	-	+ +	+	+ +	+	+ +
듄	Conqlutinatiio	n	+ +	+ +	+ +	+ +	+ +	+ +	+ +
Con	sistencyJIS K71	12 g/cm ³	1.30~1.58		1.17~1.20	1.12~1.14	1.35~1.42	1.13~1.15	1.35~1.4
	stretch AS	TM D638 MPa	40~50	10~24	70~75	70~85	160	80~85	185
~	Ductibility AS	TM D638 %	40~80	200~450	2~10	200~300	2.2~3.6	2.5~4	2.5~4
l ec	Camber AS	TM D790 MPa	2300~4000		2500~3300	2500	8300~9700	1700~3700	8700
Mechanical	Impulse (Izod								
] ≘.		Rockwell hardness JISK7202			M85~105	R119	M93~96	R120	R101~119
<u> </u>	Hardness	Hardness instrument JISK7215	D65~85	A50~100					
		Bacoor							
エ	melting point	crystal melting point °C				210~220		255~265	
eat	meiting point	vitrify temperature °C	24~40	24~40	90~105				
<u> </u>	Load bending temperature	(bending force 0.455 MPa) °C	60~80		80~105	185~190	215~220	215~245	210~260
Heat-resistant	(JIS K7207)	(bending force 1.8 MPa) °C	60~80		75~100	70~85	200~215	210~255	210~255
tar	Thermal dilati	on rate 10 ⁻⁶ /K	50~100	70~250	50~90	80~83	16~80	80	15~ 54
	Heat exchang	e rate W(m·K)	0.4~0.6	0.35~0.4					
Others	transparency		transparency	transparency	transparency	semi- transparency		semi- transparency	
lers	Bibulous (24hı	rs) JIS K7209 %	0.15~0.75	0.04~0.4	0.1~0.4	1.3~1.9	0.9~1.2	1.0~2.8	0.7 ~ 1.1

	Thermoplastic material													
polyamic	de (nylon)													
nylon11	nylon12	Nylon MXD6 30% fiberglass	POM	30% fiberglass	Polycells	30% fiberglass	polyethylene terephthalate	30% fiberglass	Polybutylece terephthalate	30% fiberglass	MPPO	30% fiberglass		
PA11	PA12	PA/MXD6-GF30	POM	POM-GF30	PC	PC-GFG30	PET	PET-GF30	PBT	PBT-GF30	PPE/PS	PPE/PS-GF30		
80	80	80	-	-	120	120	120	120	120	120	100	100		
8~15	8~15	8~15	-	_	>4	>4	>4	>4	>4	>4	2	2		
200~270	200~270	245~290	180~230	180~230	270~300	290~340	265~325	265~275	225~275	225~275	200~300	200~300		
20~100	20~100	120~140	60~120	60~120	80~120	80~120	130 ~150	40~80	40~80	40~80	40~120	40~ 120		
1.2	0.3~1.5	0.3 ~ 0.5	2~25	0.4	0.5~0.7	0.1~0.3	2~2.5	0.9~2.2	0.2~0.8	0.2~0.8	0.5~0.8	0.2~0.4		
200~500	200~ 500		50				500							
200~250	175~200										225~275			
					+						+			
+ +	++	+ +	+	+	+ +	+ +	+	+	+	+	+ +	+ +		
+	+	+	+	+	+ +	++	+	+	+	+	+	+		
+ +	++	+ +	+	-	+ +	++	+	+	+	+	+ +	+ +		
-	-	++	+ +	++	+ +	++	+	+ +	+ +	+ +	+ +	+ +		
+ +	++	+ +	-	-	+ +	+ +	_	_	_	_	+ +	+ +		
1.03~1.05	1.01~1.12	1.34	1.40~1.42	1.61	1.2	1.41~1.43	1.29~1.40	1.55~1.57	1.30~1.38	1.48~1.50	1.06~1.10	1.28~1.32		
55~56	34~60	126	60~75	125	55~70	125~135	47~70	140~155	55~60	94~125	40~60	100~125		
300	250~390	3	10~75	3	100~130	0.2~0.5	30~300	2~7	50~300	2~4	50~60	2~5		
1000	1200~1250	7750	2700~3600	8200	2000~2500	6400~8000	2700~11000	8700~11000	2400~3000	8700~9700	2100~2500	6500~8500		
			60~120		750~1000	80~160			38~52					
R108	R70~109	M112	M78~94	M90	M77	M92;R119	M94~101	M90~110	M68~78	M90	R110~120	R115~126		
191~194	160~209		175~181				245~265		200~267					
					140~150		73~80				110~112			
	70~150		155~170		138	150~152	65				110~137			
50 ~ 55	40~60	209	110~125	163	130~140	145~150	21~38	21~23	50~85		82~129	135~158		
100~150	120~180	18	50~120		68	22~23	65	25~30	60~95	210~215	33~40	14~25		
		0.49	0.23		0.2	0.6~0.95	0.14~0.15		0.18~0.29		0.46~0.7	0.44~0.47		
semi- transparency	semi- transparency	semi- transparency	ivory		transparency		transparency; ivory		ivory		ivory			
0.2	0.2	0.07	0.00 0.4	0.00	01 00	0.15	01 00	0.05	0 00 0 00	0.00	100 11	0.00		

remarks: Normal data. 1) ++Better +fine – failure 1MPa=10.2kgf/cm 1W(m·K) = 0.860kcal (m·hr· $^{\circ}$ C) 1kJ/m $^{\circ}$ =0.981kgfcm/cm $^{\circ}$

11

Spiral cooling sprue bushing

CHARACTERS OF PLASTIC MATERIAL(2)

WARRANTY CLAUSE

						Inermopla	stic material			
				30% fibergalss	LCP	30% fibergalss	Polysulfone	PES	PEEK	PAR
	JIS K6899-1			PPS-GF30	LCP	LCP-GF30	PSU	PES	PEEK	PAR
	and desired	temperature °C					160			120
\sim	pre-drying	Time hr					5			6~8
] 3		Cylinder temperature °C	280~350	280~350	280~320	290~320	315~ 370	320~390	350~400	315~400
ing	Injection	Molding temperature °C			10~40	120~170	100~ 160	110~180	130~170	120~140
ac	forming	Forming shrinkage %	1.5~1.6	0.4 ~0.9	0.1	0~0.4	0.7	0.6	1.1	0.6~0.9
Forming ability		Flowing rate L/t								
<	Extrusion tem	perature °C					325~ 380	300~350		
	chemic-electro	oplate								
1)	Plating print	·	_	_	+	+	+	+	+ +	+ +
l e-	Vacuum distill	l plating	+	+	+	+	+ +	+ +	+ +	+ +
l a	Print		+	+	+	+	+ +	+ +	+ +	+ +
Re-manufacture	Supersonic we	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	
l Fe	Conglutinatiion		_	_	_	_	+ +	+ +	+ +	+ +
Con	sistency JIS K71	12 g/cm ³	1.35	1.57~1.6	1.35~1.4	1.62	1.24~1.25	1.37	1.3	1.21~1.22
	stretch AS	TM D638 MPa	80~85	190	105~134	140~210	68	83~84	100	58~65
~	Ductibility		1~2	0.9~4	1.3~4.5	2~2.4	5~10	40~100	>60	50~65
l ec	Camber AS	STM D790 MPa	3700	10000	12500~16000	10300~14700	2400	2600~2650	4000	2000~2200
Mechanical	Impulse (Izo									
ni c		Rockwell hardness JISK7202	M89	M100	R89	M84	M69	M69,R120	M99,R126	R125
<u>a</u>	Hardness	Hardness instrument JISK7215								
		Bacoor								
_	melting point	crystal melting point°C	285~290	285~290	230~280	230~280				
lea	meiting point	vitrify temperature °C	88	88			190			190
7	Load bending temperature	(bending force0.455MPa) °C					180			180
Heat-resistant	(JIS K7207)	(bending force1.8MPa) °C	135	250~260	170	230	177	174~220	152~156	170~175
sta		ion rate 10 ⁻⁶ /K	49	22	0~1	0.2	5.6	5.5	4.7	61~62
	Heat exchang	e rate W(m·K)	0.11	0.13		0.2			0.25	0.14
Others	transparency						. ,	transparency	transparency	transparency
ers	Bibulous (24h	nrs) JIS K7209 %	<0.02	0.02		0.05	0.3	0.4	0.5	0.03

					Thern	noplastic mat	erial		
							fluororesin		
			acetyl cellulose	polyetherimide	PTFE	FEP	TFE-PFA	Ethene- tetrafluoroethylene	PVDF
	JIS K6899-1			PEI	PTFE	FEP	PFA	ETFE	PVDF
	pre-drying	temperature °C	80						
공	pre-drying	Time hr	2~4						
Ιğ		Cylinder temperature °C	170~260	340~400		330~400	350~410	290~320	180~280
l 'g	Injection	Molding temperature ℃	40~80	60 ~175			95 ~230	60 ~ 120	
a a	forming	Forming shrinkage %	0.3 ~ 1.0	0.7		3~6	2~3	2~3	2 ~3
Forming ability		Flowing rate L/t	250~600						
₹	Extrusion tem	perature °C							
1 \	chemic-electro	plate			_	_	_	_	_
1)	Plating print		+ +	+ +	_	_	-	_	-
e e	Vacuum distill	plating	+ +	+ +	_	-	_	-	-
a	Print		+ +	+ +	_	_	_	_	-
Re-manufacture	Supersonic we		_	+ +	_	_	-	_	-
l le	Conqlutinatiio	n	+ +	+ +	_	-	_	-	-
Cons	sistency JIS K71	12 g/cm³	1.22~1.34	1.27	2.14	2.12~ 2.17	2.12~2.17	1.73~1.74	1.76~1.78
	stretch AS	TM D638 MPa	25~60	105	27~34	20~29	27~31	44~49	44~49
~	Ductibility		6 ~70	60	200~400	250~350	250~350	420~450	100
lec	Camber AS	TM D790 MPa	780 ~2000	3300	340~640	600	660	910	1270~1670
Mechanical	Impulse (Izod				un-break	un-break	un-break	un-break	
] <u>S</u> .		Rockwell hardness JISK7202	R45~95	M109				R50	R110~115
<u> </u>	Hardness	Hardness instrument JISK7215			D50~60	D55	D60		
		Bacoor							
_	melting point	crystal melting point ℃			327	260~280	300~305	267	160~170
lea	mennig point	vitrify temperature ℃	230						
3	Load bending temperature	(bending force0.455MPa) °C	~ 90		55	70	75	67	110~130
es:	(JIS K7207)	(bending force1.8MPa) °C	55~72	200					
Heat-resistant	Thermal dilation rate 10 6/K		60 ~100	56	100	100	100	50~100	70~140
	Heat exchange rate W(m·K)		0.17~0.33		0.25	0.25	0.25	0.28	0.16
Others	transparency		. ,	transparency	. ,	. ,	. ,	. ,	
lers	Bibulous (24h	nrs) JIS K7209 %	1.7 ~ 6.5	0.25	< 0.01	< 0.01	0.03	<0.1	< 0.05

Article 1 (Components Covered by Warranty)

- 1.All warranties on products purchased by the customer from Punch Industry Co., Ltd. (the "Company") (the "Products") that are listed in the Standard Components for "TI Series Spiral cooling sprue bushing catalog" (the "Catalog") are regulated exclusively in accordance with the following warranty provisions (this "Warranty"). This Warranty shall be also applicable to any custom-ordered products.
- 2.In respect of any products not manufactured by the Company, only the warranty, if any, furnished by the manufacturer or supplier of such products shall apply.

Article 2 (Acceptance Inspection)

The customer's acceptance of delivery of the Products shall be conclusive evidence that the customer has examined the Products and found them to be complete, in accordance with the description on the sales order or as specifically agreed in writing between the Company and the customer, in good order and condition and fit for such purpose as contemplated by both parties, if any, for which they were supplied unless otherwise brought to the notice of the Company within seven (7) days from the date of receipt of the Products.

Article 3 (Warranty Period)

The warranty period for the Products shall be one (1) year from the delivery date to the customer.

Article 4 (Warranty Standard)

- 1.With respect to the Products purchased by the customer, the Company will replace or repair all or part of the Products free of charge if it is deemed by the Company that there is any damage, deformation, distortion or defect to the Products (the "Defects") that is proven to be attributable solely to the Company, on the condition that the written notification stating sufficient particulars of the Defects is reached to the Company within one (1) year from the delivery date of such defective product.
- 2.Minor flaws such as scratches, marks or dents that do not make the Products unusable do not constitute the Defects and thus fall outside the scope of this Warranty, provided, however, that the Company deems any flaws such as scratches, marks or dents to be particularly significant, and such flaws constitute the Defects.
- 3. The sole warranty shall be the repair or replacement of the Products.
- 4. Depending on very nature of the Products, or date of manufacture, specifications or discontinuance of manufacture/sale of the Products, etc., the Company will not be able to replace or repair any or all part of the defective products as the case may be.
- 5.Except as specifically provided in this warranty, the company makes no other warranties, expressed or implied, in respect of the products, including without limitation, any implied warranties of merchantability or of fitness for any particular purpose. This warranty shall supersede any disclaimer or warranties statement which is included in any documentation provided with the products, to the extent the provision of such disclaimer of warranties are inconsistent with this warranty.

Article 5 (Outside the Scope of Warranty)

- 1. The following Defects shall fall outside the scope of this Warranty:
- a.Defects caused by the customer's using the Products in violation of the provisions of this Warranty;
- b.Defects caused by natural disasters, including, without limitation, earthquakes, tsunami, fires, floods, hurricanes, tornados;
- c.Defects caused by the customer's processing, repairing, modifying or disassembling the Products;
- d.Defects caused by the customer's rebuilding or repair by the customer without permission of the Company;
- e.Defects in the Products caused by the willful misconduct or negligence of the customer;
- f.Defects caused by the customer's use or diversion for military purposes, such as weapons, arms or armaments;
- g. Defects caused by the customer's use of the Products for such purposes or in such manners as are not expected by the Company;

 b. Defects caused by the customer's use in violation of any provision in the Catalog or any documentation attached to the Products (including
- h.Defects caused by the customer's use in violation of any provision in the Catalog or any documentation attached to the Products (including auxiliaries thereto) that describes specification, intended purpose, precautionary statement, prohibited matter, condition of use, drawing or any other items on the Products;
- i.Defects attributable to any equipment other than the Products themselves; or
- j.Defects caused by the customer's use of the Products for any purpose other than the intended one (i.e., use as a part/component for a general production equipment). In this case, "general production equipment" means plastic mold tools, but does not include, without limitation, production equipment for transportation devices for the purpose of transporting humans, such as automobiles, vehicles or ships, medical equipments for the purpose of curing or diagnosing humans, aerospace instruments, nuclear equipments, or consumer goods that are used in general households such as electronic and electric equipment.
- 2.The Company shall be exempt from any liability in this Warranty in the case where the Company clearly disclaims its obligation to replace or repair the Products in the Catalog or there is any special agreement between the Company and the customer that precludes application of this Warranty.

Article 6 (Disclaimer)

- 1. The Company shall not be liable for any damages arising out of or in connection with any of the following cases:
- a.Infringement of patent right, utility model right, design right, trademark or any other intellectual property right of any third party in relation to the Products;
- $b. \\ Delay in or prohibition of exportation of the Products due to laws, ordinances or regulations; or$
- c.Defects in the Products enumerated in the first paragraph of the preceding article.
- 2. The Company's liability in connection with the Products shall in no circumstances exceed their invoice price.

Article 7 (Warranty Standard for Oversea Customer)

This Warranty shall be applicable to use of the Products overseas. However, if the defect, trouble or damage of the Products used overseas is caused by nonconformity to the overseas technical standard, laws or regulation, shortage of electricity, defective facilities or any other difference of usage environment from that in Japan, the Company shall deem it as Item g, Paragraph 1 of Article 5 which falls outside the scope of this Warranty.

Article 8 (Usage Restriction)

This Warranty shall not be available to the Products which are used or diverted for military-related products such as weapons, arms or armaments, used in production facilities thereof or military-related factories or used for any other military-related purpose.

Article 9 (Governing Law and Jurisdiction)

This Warranty shall be governed by and construed in accordance with the laws of Japan. All dispute arising out of or in connection with this Warranty shall be subject to the exclusive jurisdiction of the Tokyo District Court as the court of first instance.

PUNCH INDUSTRY CO., LTD.